ترغب بنشر مسار تعليمي؟ اضغط هنا

The Galaxy Evolution Explorer: A Space Ultraviolet Survey Mission

86   0   0.0 ( 0 )
 نشر من قبل Christopher Martin
 تاريخ النشر 2004
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We give an overview of the Galaxy Evolution Explorer (GALEX), a NASA Explorer Mission launched on April 28, 2003. GALEX is performing the first space UV sky-survey, including imaging and grism surveys in two bands (1350-1750 Angstroms and 1750-2750 Angstroms). The surveys include an all-sky imaging survey (m[AB] ~ 20.5), a medium imaging survey of 1000 square degrees (m[AB] ~ 23), a deep imaging survey of 100 square degrees (m[AB] ~ 25), and a nearby galaxy survey. Spectroscopic grism surveys (R=100-200) are underway with various depths and sky coverage. Many targets overlap existing or planned surveys. We will use the measured UV properties of local galaxies, along with corollary observations, to calibrate the UV-global star formation rate relationship in local galaxies. We will apply this calibration to distant galaxies discovered in the deep imaging and spectroscopic surveys to map the history of star formation in the universe over the redshift range 0 < z < 1.5, and probe the physical drivers of star formation in galaxies. The GALEX mission includes a Guest Investigator program supporting the wide variety of programs made possible by the first UV sky survey.



قيم البحث

اقرأ أيضاً

The Solar Spectroscopy Explorer (SSE) concept is conceived as a scalable mission, with two to four instruments and a strong focus on coronal spectroscopy. In its core configuration it is a small strategic mission ($250-500M) built around a microcalor imeter (an imaging X-ray spectrometer) and a high spatial resolution (0.2 arcsec) EUV imager. SSE puts a strong focus on the plasma spectroscopy, balanced with high resolution imaging - providing for break-through imaging science as well as providing the necessary context for the spectroscopy suite. Even in its smallest configuration SSE provides observatory class science, with significant science contributions ranging from basic plasma and radiative processes to the onset of space weather events. The basic configuration can carry an expanded instrument suite with the addition of a hard X-ray imaging spectrometer and/or a high spectral resolution EUV instrument - significantly expanding the science capabilities. In this configuration, it will fall at the small end of the medium class missions, and is described below as SSE+. This scalable mission in its largest configuration would have the full complement of these instruments and becomes the RAM (Reconnection And Microscale) mission. This mission has been designed to address key outstanding issues in coronal physics, and to be highly complementary to missions such as Solar Probe Plus, Solar Orbiter, and Solar-C as well as ground-based observatories.
High-resolution spectra of the hot white dwarf G191-B2B, covering the wavelength region 905-1187A, were obtained with the Far Ultraviolet Spectroscopic Explorer (FUSE). This data was used in conjunction with existing high-resolution Hubble Space Tele scope STIS observations to evaluate the total HI, DI, OI and NI column densities along the line of sight. Previous determinations of N(DI) based upon GHRS and STIS observations were controversial due to the saturated strength of the DI Lyman-alpha line. In the present analysis the column density of DI has been measured using only the unsaturated Lyman-beta and Lyman-gamma lines observed by FUSE. A careful inspection of possible systematic uncertainties tied to the modeling of the stellar continuum or to the uncertainties in the FUSE instrumental characteristics has been performed. The column densities derived are: log N(DI) = 13.40 +/-0.07, log N(OI) = 14.86 +/-0.07, and log N(NI) = 13.87 +/-0.07 quoted with 2-sigma uncertainties. The measurement of the HI column density by profile fitting of the Lyman-alpha line has been found to be unsecure. If additional weak hot interstellar components are added to the three detected clouds along the line of sight, the HI column density can be reduced quite significantly, even though the signal-to-noise ratio and spectral resolution at Lyman-alpha are excellent. The new estimate of N(HI) toward G191-B2B reads: log N(HI) = 18.18 +/-0.18 (2-sigma uncertainty), so that the average (D/H) ratio on the line of sight is: (D/H) = 1.66 (+0.9/-0.6) *10^-5 (2-sigma uncertainty).
We present a deuterium abundance analysis of the line of sight toward the white dwarf WD2211-495 observed with the Far Ultraviolet Spectroscopic Explorer (FUSE). Numerous interstellar lines are detected on the continuum of the stellar spectrum. A tho rough analysis was performed through the simultaneous fit of interstellar absorption lines detected in the four FUSE channels of multiple observations with different slits. We excluded all saturated lines in order to reduce possible systematic errors on the column density measurements. We report the determination of the average interstellar D/O and D/N ratios along this line of sight at the 95% confidence level: D/O = 4.0 +/-1.2 *10^-2; D/N = 4.4 +/-1.3 *10^-1. In conjunction with FUSE observations of other nearby sight lines, the results of this study will allow a deeper understanding of the present-day abundance of deuterium in the local interstellar medium and its evolution with time.
242 - M. E. Gray 2008
We present an overview of the Space Telescope A901/2 Galaxy Evolution Survey (STAGES). STAGES is a multiwavelength project designed to probe physical drivers of galaxy evolution across a wide range of environments and luminosity. A complex multi-clus ter system at z~0.165 has been the subject of an 80-orbit F606W HST/ACS mosaic covering the full 0.5x0.5 (~5x5 Mpc^2) span of the supercluster. Extensive multiwavelength observations with XMM-Newton, GALEX, Spitzer, 2dF, GMRT, and the 17-band COMBO-17 photometric redshift survey complement the HST imaging. Our survey goals include simultaneously linking galaxy morphology with other observables such as age, star-formation rate, nuclear activity, and stellar mass. In addition, with the multiwavelength dataset and new high resolution mass maps from gravitational lensing, we are able to disentangle the large-scale structure of the system. By examining all aspects of environment we will be able to evaluate the relative importance of the dark matter halos, the local galaxy density, and the hot X-ray gas in driving galaxy transformation. This paper describes the HST imaging, data reduction, and creation of a master catalogue. We perform Sersic fitting on the HST images and conduct associated simulations to quantify completeness. In addition, we present the COMBO-17 photometric redshift catalogue and estimates of stellar masses and star-formation rates for this field. We define galaxy and cluster sample selection criteria which will be the basis for forthcoming science analyses, and present a compilation of notable objects in the field. Finally, we describe the further multiwavelength observations and announce public access to the data and catalogues.
96 - J. Chang , G. Ambrosi , Q. An 2017
The DArk Matter Particle Explorer (DAMPE), one of the four scientific space science missions within the framework of the Strategic Pioneer Program on Space Science of the Chinese Academy of Sciences, is a general purpose high energy cosmic-ray and ga mma-ray observatory, which was successfully launched on December 17th, 2015 from the Jiuquan Satellite Launch Center. The DAMPE scientific objectives include the study of galactic cosmic rays up to $sim 10$ TeV and hundreds of TeV for electrons/gammas and nuclei respectively, and the search for dark matter signatures in their spectra. In this paper we illustrate the layout of the DAMPE instrument, and discuss the results of beam tests and calibrations performed on ground. Finally we present the expected performance in space and give an overview of the mission key scientific goals.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا