ترغب بنشر مسار تعليمي؟ اضغط هنا

Dynamics of oscillating relativistic tori around Kerr black holes

57   0   0.0 ( 0 )
 نشر من قبل Zanotti Olindo
 تاريخ النشر 2004
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present a comprehensive numerical study of the dynamics of relativistic axisymmetric accretion tori with a power-law distribution of specific angular momentum orbiting in the background spacetime of a Kerr black hole. By combining general relativistic hydrodynamics simulations with a linear perturbative approach we investigate the main dynamical properties of these objects over a large parameter space. The astrophysical implications of our results extend and improve two interesting results that have been recently reported in the literature. Firstly, the induced quasi-periodic variation of the mass quadrupole moment makes relativistic tori of nuclear matter densities, as those formed during the last stages of binary neutron star mergers, promising sources of gravitational radiation, potentially detectable by interferometric instruments. Secondly, $p$-mode oscillations in relativistic tori of low rest-mass densities could be used to explain high frequency quasi-periodic oscillations observed in X-ray binaries containing a black hole candidate under conditions more generic than those considered so far.



قيم البحث

اقرأ أيضاً

Context. Some microquasars exhibit millisecond quasi-periodic oscillations (QPO) that are likely related to phenomena occuring in the immediate vicinity of the central black hole. Oscillations of accretion tori have been proposed to model these QPOs. Aims. Here, we aim at determining the observable spectral signature of slender accretion tori surrounding Kerr black holes. We analyze the impact of the inclination and spin parameters on the power spectra. Methods. Ray-traced power spectra of slender tori oscillation modes are computed in the Kerr metric. Results. We show that the power spectral densities of oscillating tori are very sensitive to the inclination and spin parameters. This strong dependency of the temporal spectra on inclination and spin may lead to observable constraints of these parameters. Conclusions. This work goes a step further in the analysis of the oscillating torus QPO model. It is part of a long-term study that will ultimately lead to comparison with observed data.
194 - Tim Johannsen 2015
Very-long baseline interferometric observations have resolved structure on scales of only a few Schwarzschild radii around the supermassive black holes at the centers of our Galaxy and M87. In the near future, such observations are expected to image the shadows of these black holes together with a bright and narrow ring surrounding their shadows. For a Kerr black hole, the shape of this photon ring is nearly circular unless the black hole spins very rapidly. Whether or not, however, astrophysical black holes are truly described by the Kerr metric as encapsulated in the no-hair theorem still remains an untested assumption. For black holes that differ from Kerr black holes, photon rings have been shown numerically to be asymmetric for small to intermediate spins. In this paper, I calculate semi-analytic expressions of the shapes of photon rings around black holes described by a new Kerr-like metric which is valid for all spins. I show that photon rings in this spacetime are affected by two types of deviations from the Kerr metric which can cause the ring shape to be highly asymmetric. I argue that the ring asymmetry is a direct measure of a potential violation of the no-hair theorem and that both types of deviations can be detected independently if the mass and distance of the black hole are known. In addition, I obtain approximate expressions of the diameters, displacements, and asymmetries of photon rings around Kerr and Kerr-like black holes.
The analysis of the thermal spectrum of geometrically thin and optically thick accretion disks of black holes, the so-called continuum-fitting method, is one of the leading techniques for measuring black hole spins. Current models normally approximat e the disk as infinitesimally thin, while in reality the disk thickness is finite and increases as the black hole mass accretion rate increases. Here we present an XSPEC model to calculate the multi-temperature blackbody spectrum of a thin accretion disk of finite thickness around a Kerr black hole. We test our new model with an RXTE observation of the black hole binary GRS 1915+105. We find that the spin value inferred with the new model is slightly higher than the spin value obtained with a model with an infinitesimally thin disk, but the difference is small and the effect is currently subdominant with respect to other sources of uncertainties in the final spin measurement.
Black hole (BH) accretion flows and jets are qualitatively affected by the presence of ordered magnetic fields. We study fully three-dimensional global general relativistic magnetohydrodynamic (MHD) simulations of radially extended and thick (height $H$ to cylindrical radius $R$ ratio of $|H/R|sim 0.2--1$) accretion flows around BHs with various dimensionless spins ($a/M$, with BH mass $M$) and with initially toroidally-dominated ($phi$-directed) and poloidally-dominated ($R-z$ directed) magnetic fields. Firstly, for toroidal field models and BHs with high enough $|a/M|$, coherent large-scale (i.e. $gg H$) dipolar poloidal magnetic flux patches emerge, thread the BH, and generate transient relativistic jets. Secondly, for poloidal field models, poloidal magnetic flux readily accretes through the disk from large radii and builds-up to a natural saturation point near the BH. For sufficiently high $|a/M|$ or low $|H/R|$ the polar magnetic field compresses the inflow into a geometrically thin highly non-axisymmetric magnetically choked accretion flow (MCAF) within which the standard linear magneto-rotational instability is suppressed. The condition of a highly-magnetized state over most of the horizon is optimal for the Blandford-Znajek mechanism that generates persistent relativistic jets with $gtrsim 100$% efficiency for $|a/M|gtrsim 0.9$. A magnetic Rayleigh-Taylor and Kelvin-Helmholtz unstable magnetospheric interface forms between the compressed inflow and bulging jet magnetosphere, which drives a new jet-disk quasi-periodic oscillation (JD-QPO) mechanism. The high-frequency QPO has spherical harmonic $|m|=1$ mode period of $tausim 70GM/c^3$ for $a/Msim 0.9$ with coherence quality factors $Qgtrsim 10$. [abridged]
We consider a temporal response of relativistically broadened line spectrum of iron from black hole accretion irradiated by an X-ray echo under strong gravity. The physical condition of accreting gas is numerically calculated in the context of genera l relativistic hydrodynamics under steady-state, axisymmetry in Kerr geometry. With the onset of a point-like X-ray flare of a short finite duration just above the accretion surface, the gas is assumed to be ionized to produce a neutral iron fluorescent line. Using a fully relativistic ray-tracing approach, the response of line photons due to the X-ray illumination is traced as a function of time and energy for different source configurations around sw and Kerr black holes. Our calculations show that the X-ray echo on the accretion surface clearly imprints a characteristic time-variability in the line spectral features depending on those parameters. Simulated line profiles, aimed for the future microcalorimeter missions of large collecting area such as {it Athena}/X-IFU for typical radio-quiet Seyfert galaxies, are presented to demonstrate that state-of-the-art new observations could differentiate various source parameters by such an X-ray tomographic line reverberation.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا