ﻻ يوجد ملخص باللغة العربية
The High Mass X-ray Binaries (HMXRBs) SMC X-1 and 4U1700-37 have been observed with FUSE to study the effect of the X-ray source on the stellar wind of the primary. In both systems phase dependent changes in the wind lines have been observed, indicating the creation of a X-ray ionization zone in the stellar wind. The high X-ray luminosity of SMC X-1 ionizes much of the wind and leaves a Stromgren zone. This disrupts the resonance-line acceleration of the wind in portions of the orbit, quencing the wind and disrupting the mass flow. A similar but less dramatic effect was found for the first time in 4U1700-37. This so-called Hatchett-McCray (HM) effect had been predicted for 4U1700-37, but was not previously detected.
We present a detailed spectral analysis of Chandra/ACIS-S CC mode observations of the massive X-ray binary system SMC X-1. The system was observed during both the high and low X-ray states of the roughly 60-day superorbital period. The continuum spec
We present the results of a detailed non-LTE analysis of the UV and optical spectrum of the O6.5Iaf+ star HD153919 - the mass donor in the high-mass X-ray binary 4U1700-37. Given the eclipsing nature of the system these results allow us to determine
We present the results of timing and spectral analysis of X-ray high state observations of the high-mass X-ray pulsar SMC X-1 with Chandra, XMM-Newton, and ROSAT, taken between 1991 and 2001. The source has L_X ~ 3-5 x 10^38 ergs/s, and the spectra c
Based on its Hipparcos proper motion, we propose that the high-mass X-ray binary HD153919/4U1700-37 originates in the OB association Sco OB1. At a distance of 1.9 kpc the space velocity of 4U1700-37 with respect to Sco OB1 is 75 km/s. This runaway ve
We have re-analysed all available high-resolution ultraviolet IUE spectra of the high-mass X-ray binary HD153919/4U1700-37. The radial velocity semi-amplitude of 20.6 +/- 1.0 km/s and orbital eccentricity of 0.22 +/- 0.04 agree very well with the val