ﻻ يوجد ملخص باللغة العربية
We present astrometry and $BVI$ photometry, down to $Vsimeq22$, of the very young open cluster NGC6530, obtained from observations taken with the Wide Field Imager camera at the MPG/ESO 2.2 m Telescope. Both the $V$ vs. $B-V$ and the $V$ vs. $V-I$ color-magnitude diagrams (CMD) show the upper main sequence dominated by very bright cluster stars, while, due to the high obscuration of the giant molecular cloud surrounding the cluster, the blue envelopes of the diagrams at $Vgtrsim 14$ are limited to the main sequence stars at the distance of NGC6530. This particular structure of the NGC6530 CMD allows us to conclude that its distance is about $d simeq 1250$ pc, significantly lower than the previous determination of d=1800 pc. We have positionally matched our optical catalog with the list of X-ray sources found in a Chandra-ACIS observation, finding a total of 828 common stars, 90% of which are pre-main sequence stars in NGC6530. Using evolutionary tracks of Siess et al. (2000)}, mass and age values are inferred for these stars. The median age of the cluster is about 2.3 Myr; in the mass range (0.6--4.0)$ M_odot$, the Initial Mass Function (IMF) shows a power law index $x=1.22pm0.17$, consistent with both the Salpeter index (1.35), and with the index derived for other young clusters ; towards smaller masses the IMF shows a peak and then it starts to decrease.
We have studied the star formation history and the initial mass function (IMF) using the age and mass derived from spectral energy distribution (SED) fitting and from color-magnitude diagrams. We also examined the physical and structural parameters o
Mechanisms regulating the evolution of pre-main sequence stars can be understood by studying stellar properties such as rotation, disk accretion, internal mixing and binarity. To investigate such properties, we studied a sample of 332 candidate membe
Using Hubble Space Telescope (HST) ACS/WFC data we present the photometry and spatial distribution of resolved stellar populations in the outskirts of NGC 2915, a blue compact dwarf with an extended HI disc. These observations reveal an elliptical di
The stellar initial mass function (IMF) is a fundamental property of star formation, offering key insight into the physics driving the process as well as informing our understanding of stellar populations, their by-products, and their impact on the s
We present a simple statistical analysis of recent numerical simulations exploring the correlation between the core mass function obtained from the fragmentation of a molecular cloud and the stellar mass function which forms from these collapsing cor