ﻻ يوجد ملخص باللغة العربية
We briefly review the young field of spectropolarimetry of core-collapse supernovae (SNe). Spectropolarimetry provides the only direct known probe of early-time supernova (SN) geometry. The fundamental result is that asphericity is a ubiquitous feature of young core-collapse SNe. However, the nature and degree of the asphericity vary considerably. The best predictor of core-collapse SN polarization seems to be the mass of the hydrogen envelope that is intact at the time of the explosion: those SNe that arise from progenitors with large, intact envelopes (e.g., Type II-plateau) have very low polarization, while those that result from progenitors that have lost part (SN IIb, SN IIn) or all (SN Ib) of their hydrogen (or even helium; SN Ic) layers prior to the explosion tend to show substantial polarization. Thus, the deeper we probe into core-collapse events, the greater the asphericity seems to be, suggesting a fundamentally asymmetric explosion with the asymmetry damped by the addition of envelope material.
Knowledge of the progenitors of core-collapse supernovae is a fundamental component in understanding the explosions. The recent progress in finding such stars is reviewed. The minimum initial mass that can produce a supernova has converged to 8 +/- 1
Advances in our understanding and the modeling of stellar core-collapse and supernova explosions over the past 15 years are reviewed, concentrating on the evolution of hydrodynamical simulations, the description of weak interactions and nuclear equat
Hydrogen-rich core collapse supernovae, known as Type II supernovae, are the most common type of stellar explosion realized in nature. They are defined by the presence of prominent hydrogen lines in their spectra. Type II supernovae are observed only
We investigate correlated gravitational wave and neutrino signals from rotating core-collapse supernovae with simulations. Using an improved mode identification procedure based on mode function matching, we show that a linear quadrupolar mode of the
Core-collapse supernovae are among Natures most energetic events. They mark the end of massive star evolution and pollute the interstellar medium with the life-enabling ashes of thermonuclear burning. Despite their importance for the evolution of gal