ﻻ يوجد ملخص باللغة العربية
We present the results of a near-infrared monitoring program of the Anomalous X-ray Pulsar 1E 2259+586, performed at the Gemini Observatory. This program began three days after the pulsars 2002 June outburst, and spans ~1.5 years. We find that after an initial increase associated with the outburst, the near-infrared flux decreased continually and reached the pre-burst quiescent level after about one year. We compare both the near-infrared flux enhancement and its decay to those of the X-ray afterglow, and find them to be remarkably consistent. Fitting simple power laws to the RXTE pulsed flux and near-infrared data for t>1 day post-burst, we find the following decay indices: alpha=-0.21+/-0.01 (X-ray), alpha=-0.21+/-0.02 (near-infrared), where flux is a function of time such that F is proportional to t^alpha. This suggests that the enhanced infrared and X-ray fluxes have a physical link post-outburst, most likely from the neutron-star magnetosphere.
We present an analysis of five X-ray Multi-Mirror Mission (XMM) observations of the anomalous X-ray pulsar (AXP) 1E 2259+586 taken in 2004 and 2005 during its relaxation following its 2002 outburst. We compare these data with those of five previous X
(abridged) An outburst of more than 80 individual bursts, similar to those seen from Soft Gamma Repeaters (SGRs), was detected from the Anomalous X-ray Pulsar (AXP) 1E 2259+586 in 2002 June. Coincident with this burst activity were gross changes in t
Magnetic field geometry is expected to play a fundamental role in magnetar activity. The discovery of a phase-variable absorption feature in the X-ray spectrum of SGR 0418+5729, interpreted as cyclotron resonant scattering, suggests the presence of v
We present X-ray imaging, timing, and phase resolved spectroscopy of the anomalous X-ray pulsar 1E 2259+58.6 using the Chandra X-ray Observatory. The spectrum is well described by a power law plus blackbody model with power law index = 3.6(1), kT_BB
We present Keck R and I band images of the field of the anomalous X-ray pulsar 1E 2259+58.6. We derive an improved X-ray position from archival ROSAT HRI observations by correcting for systematic (boresight) errors. Within the corresponding error cir