ﻻ يوجد ملخص باللغة العربية
We report simultaneous X-ray and optical observations of V404 Cyg in quiescence. The X-ray flux varied dramatically by a factor of >20 during a 60ks observation. X-ray variations were well correlated with those in Halpha, although the latter include an approximately constant component as well. Correlations can also be seen with the optical continuum, although these are less clear. We see no large lag between X-ray and optical line variations; this implies they are causally connected on short timescales. As in previous observations, Halpha flares exhibit a double-peaked profile suggesting emission distributed across the accretion disk. The peak separation is consistent with material extending outwards to at least the circularization radius. The prompt response in the entire Halpha line confirms that the variability is powered by X-ray (and/or EUV) irradiation.
We present the results of optical and infrared photometry of the quiescent X-ray transient V404 Cyg during the period 1992-2003. The ellipsoidal modulations extracted from the most complete databases (years 1992, 1998 and 2001) show unequal maxima an
We present a spectrophotometric study of short-term optical variability in the quiescent black hole X-ray transient V404 Cyg. This includes two nights of high time-resolution Halpha spectroscopy with which we resolve much of the time-variability, and
We have obtained high time resolution (seconds) photometry of LMC X-2 in December 1997, simultaneously with the Rossi X-ray Timing Explorer (RXTE), in order to search for correlated X-ray and optical variability on timescales from seconds to hours. W
We present a multiwavelength analysis of the simultaneous optical and X-ray light curves of the microquasar V404 Cyg during the June 2015 outburst. We have performed a comprehensive analysis of all the INTEGRAL/IBIS, JEM-X, and OMC observations durin
On 2015 June 15 the Swift space observatory discovered that the Galactic black hole candidate V404 Cyg was undergoing another active X-ray phase, after 25 years of inactivity (Barthelmy et al. 2015). Twelve telescopes of the MASTER Global Robotic Net