ﻻ يوجد ملخص باللغة العربية
We explore the role of neutrinos in a Quark Nova explosion. We study production of neutrinos during this event, their propagation and their interactions with the surrounding quark matter and neutron-rich envelope. We address relevant physical issues such as the timescale for the initial core collapse, the total energy emitted in neutrinos and their effect on the low density matter surrounding the core. We find that it is feasible that the neutrino burst can lead to significant mass ejection of the nuclear envelope.
Classical novae are the most common astrophysical thermonuclear explosions, occurring on the surfaces of white dwarf stars accreting gas from companions in binary star systems. Novae typically expel ~10^(-4) solar masses of material at velocities exc
The axion quark nuggets introduced in cite{zhitnitsky}-cite{zhitnitsky13} are a candidate for cold dark matter which, in addition, may be relevant in baryogenesis scenarios. The present work studies their evolution till they enter in the colour super
It is believed that quark matter can exist in neutron star interior if the baryon density is high enough. When there is a large isospin density, quark matter could be in a pion condensed phase. We compute neutrino emission from direct Urca processes
We review infrared observations of classical and recurrent novae, at wavelengths >3microns, including both broad-band and spectroscopic observations. In recent years infrared spectroscopy in particular has revolutionised our understanding of the nova
We propose a simple model explaining two outstanding astrophysical problems related to compact objects: (1) that of stars such as G87-7 (alias EG 50) that constitute a class of relatively low-mass white dwarfs which nevertheless fall away from the C/