ﻻ يوجد ملخص باللغة العربية
The X-ray afterglow of the Gamma-Ray Burst GRB 030329, associated to SN2003dh at z=0.1685, has been observed with XMM-Newton 258 days after the burst explosion. A source with flux of (6.2 +/- 2.3) 10^{-16} erg cm^{-2} s^{-1} (0.5-2 keV) has been detected at the GRB position. This measurement, together with a re-analysis of the previous X-ray observations, indicates a flattening of the X-ray light curve ~40 days after the burst. This is in remarkable agreement with the scenario invoking the presence of two jets with different opening angles. The wider jet should be responsible for the observed flattening due to its transition into the non-relativistic Sedov-Taylor phase.
We report 31 polarimetric observations of the afterglow of GRB 030329 with high signal-to-noise and high sampling frequency. The data imply that the afterglow magnetic field has small coherence length and is mostly random, probably generated by turbulence.
We report 31 polarimetric observations of the afterglow of GRB 030329 with high signal-to-noise and high sampling frequency. We establish the polarization light curve, detect sustained polarization at the percent level, and find significant variabili
The best-sampled afterglow light curves are available for GRB 030329. A distinguishing feature of this event is the obvious rebrightening at around 1.6 days after the burst. Proposed explanations for the rebrightening mainly include the two-component
We present post-jet-break textit{HST}, VLA and textit{Chandra} observations of the afterglow of the long $gamma$-ray bursts GRB 160625B (between 69 and 209 days) and GRB 160509A (between 35 and 80 days). We calculate the post-jet-break decline rates
Radio observations of gamma-ray burst (GRB) afterglows are essential for our understanding of the physics of relativistic blast waves, as they enable us to follow the evolution of GRB explosions much longer than the afterglows in any other wave band.