ﻻ يوجد ملخص باللغة العربية
We present two new non-parametric methods for quantifying galaxy morphology: the relative distribution of the galaxy pixel flux values (the Gini coefficient or G) and the second-order moment of the brightest 20% of the galaxys flux (M20). We test the robustness of G and M20 to decreasing signal-to-noise and spatial resolution, and find that both measures are reliable to within 10% at average signal-to-noise per pixel greater than 3 and resolutions better than 1000 pc and 500 pc, respectively. We have measured G and M20, as well as concentration (C), asymmetry (A), and clumpiness (S) in the rest-frame near-ultraviolet/optical wavelengths for 150 bright local normal Hubble type galaxies (E-Sd) galaxies and 104 0.05 < z < 0.25 ultra-luminous infrared galaxies (ULIRGs).We find that most local galaxies follow a tight sequence in G-M20-C, where early-types have high G and C and low M20 and late-type spirals have lower G and C and higher M20. The majority of ULIRGs lie above the normal galaxy G-M20 sequence, due to their high G and M20 values. Their high Gini coefficients arise from very bright nuclei, while the high second-order moments are produced by multiple nuclei and bright tidal tails. All of these features are signatures of recent and on-going mergers and interactions. We also find that in combination with A and S, G is more effective than C at distinguishing ULIRGs from the normal Hubble-types. Finally, we measure the morphologies of 45 1.7 < z < 3.8 galaxies from HST NICMOS observations of the Hubble Deep Field North. We find that many of the z $sim$ 2 galaxies possess G and A higher than expected from degraded images of local elliptical and spiral galaxies, and have morphologies more like low-redshift single nucleus ULIRGs.
Machine Learning classification models learn the relation between input as features and output as a class in order to predict the class for the new given input. Quantum Mechanics (QM) has already shown its effectiveness in many fields and researchers
We present a new approach to describe hydrodynamics carrying non-Abelian macroscopic degrees of freedom. Based on the Kaluza-Klein compactification of a higher-dimensional neutral dissipative fluid on a group manifold, we obtain a d=4 colored dissipa
We provide a brief overview of the Galaxy Zoo and Zooniverse projects, including a short discussion of the history of, and motivation for, these projects as well as reviewing the science these innovative internet-based citizen science projects have p
We present an extended morphometric system to automatically classify galaxies from astronomical images. The new system includes the original and modifie
Time-varying mixture densities occur in many scenarios, for example, the distributions of keywords that appear in publications may evolve from year to year, video frame features associated with multiple targets may evolve in a sequence. Any models th