ترغب بنشر مسار تعليمي؟ اضغط هنا

A study of the Galactic star forming region IRAS 02593+6016 / S 201 in infrared and radio wavelengths

76   0   0.0 ( 0 )
 نشر من قبل Devendra Ojha K.
 تاريخ النشر 2003
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present infrared and radio continuum observations of S 201 star forming region. A massive star cluster is observed in this region, which contains different classes of young stellar objects. The near-infrared colour-colour and colour-magnitude diagrams are studied to discuss the nature of these sources. We have discovered the knots of molecular hydrogen emission at 2.122 micron in the central region of S 201. These knots are clearly seen along the diffuse emission in north-west direction which are probably the obscured Herbig-Haro objects. High sensitivity and high resolution radio continuum images from GMRT observations at 610 and 1280 MHz show an interesting arc-shaped structure due to the interaction between the H II region and the adjacent molecular cloud. The ionization front at the interface between the H II region and the molecular cloud is clearly seen by comparing the radio, molecular hydrogen and Br Gamma images. The emission from the carriers of Unidentified Infrared Bands in the mid-infrared 6-9 micron (possibly due to PAHs) as extracted from the Midcourse Space Experiment survey (at 8, 12, 14 and 21 micron) is compared with the radio emission. The HIRES processed IRAS maps at 12, 25, 60, and 100 micron, have also been used for comparison. The spatial distribution of the temperature and the optical depth of the warm dust component around S 201 region, has been generated from the mid-infrared images.



قيم البحث

اقرأ أيضاً

114 - Varsha R 2016
A multi-wavelength investigation of the star forming complex IRAS 20286+4105, located in the Cygnus-X region, is presented here. Near-infrared K-band data is used to revisit the cluster / stellar group identified in previous studies. The radio contin uum observations, at 610 and 1280 MHz show the presence of a HII region possibly powered by a star of spectral type B0 - B0.5. The cometary morphology of the ionized region is explained by invoking the bow-shock model where the likely association with a nearby supernova remnant is also explored. A compact radio knot with non-thermal spectral index is detected towards the centre of the cloud. Mid-infrared data from the Spitzer Legacy Survey of the Cygnus-X region show the presence of six Class I YSOs inside the cloud. Thermal dust emission in this complex is modelled using Herschel far-infrared data to generate dust temperature and column density maps. Herschel images also show the presence of two clumps in this region, the masses of which are estimated to be {sim} 175 M{sun} and 30 M{sun}. The mass-radius relation and the surface density of the clumps do not qualify them as massive star forming sites. An overall picture of a runaway star ionizing the cloud and a triggered population of intermediate-mass, Class I sources located toward the cloud centre emerges from this multiwavelength study. Variation in the dust emissivity spectral index is shown to exist in this region and is seen to have an inverse relation with the dust temperature.
188 - P. Benaglia , M. Ribo , J.A. Combi 2010
Context. With the latest infrared surveys, the number of massive protostellar candidates has increased significantly. New studies have posed additional questions on important issues about the formation, evolution, and other phenomena related to them. Complementary to infrared data, radio observations are a good tool to study the nature of these objects, and to diagnose the formation stage. Aims. Here we study the far-infrared source IRAS 16353-4636 with the aim of understanding its nature and origin. In particular, we search for young stellar objects (YSOs), possible outflow structure, and the presence of non-thermal emission. Methods. Using high-resolution, multi-wavelength radio continuum data obtained with the Australia Telescope Compact Array, we image IRAS 16353-4636 and its environment from 1.4 to 19.6 GHz, and derive the distribution of the spectral index at maximum angular resolution. We also present new JHKs photometry and spectroscopy data obtained at ESO NTT. 13 CO and archival HI line data, and infrared databases (MSX, GLIMPSE, MIPSGal) are also inspected. Results. The radio continuum emission associated with IRAS 16353-4636 was found to be extended (~10 arcsec), with a bow-shaped morphology above 4.8 GHz, and a strong peak persistent at all frequencies. The NIR photometry led us to identify ten near-IR sources and classify them according to their color. We used the HI line data to derive the source distance, and analyzed the kinematical information from the CO and NIR lines detected. Conclusions. We have identified the source IRAS 16353-4636 as a new protostellar cluster. In this cluster we recognized three distinct sources: a low-mass YSO, a high-mass YSOs, and a mildly confined region of intense and non-thermal radio emission. We propose the latter corresponds to the terminal part of an outflow.
56 - S. Vig 2005
A multiwavelength study of the star forming regions associated with IRAS 19111+1048 and IRAS 19110+1045 has been carried out. These have been simultaneously mapped in two far infrared bands at lambda_eff ~ 130 and 200 micron with ~1 angular resolutio n using the TIFR 1-m balloon borne telescope. The radio emission from the ionised gas of these regions has been imaged at 1280, 610 and 325 MHz using the Giant Metrewave Radio Telescope, India. A total of 20 compact radio sources have been detected from the high resolution radio map of IRAS 19111+1048 at 1280 MHz. Assuming these sources to represent exciting zero age main sequence (ZAMS) stars, the initial mass function is found to be quite steep, with the power law index of 5.3+-0.5 for the mass range 14 < m/M_sun < 33. The spectral types of the ZAMS stars inferred independently from the radio and NIR measurements match very well for a good fraction of the radio sources having NIR counterparts. For IRAS 19110+1045 region, seven radio sources have been detected of which two are associated with deeply embedded 2MASS objects. Self consistent radiative transfer modelling aimed at extracting important physical and geometrical details of the two IRAS sources has been carried out. A uniform density distribution of dust and gas is implied for both the sources. The extents of ionised gas, number of ZAMS stars, presence of deeply embedded sources and lower value of L/M for the cloud, support the youth of IRAS 19110+1045 vis-a-vis its neighbour, IRAS 19111+1048, consistent with earlier studies.
The Galactic HII region luminosity function (LF) is an important metric for understanding global star formation properties of the Milky Way, but only a few studies have been done and all use relatively small numbers of HII regions. We use a sample of 797 first Galactic quadrant HII regions compiled from the WISE Catalog of Galactic HII Regions to examine the form of the LF at multiple infrared and radio wavelengths. Our sample is statistically complete for all regions powered by single stars of type O9.5V and earlier. We fit the LF at each wavelength with single and double power laws. Averaging the results from all wavelengths, the mean of the best-fit single power law index is $langlealpharangle=-1.75,pm,0.01$. The mean best-fit double power law indices are $langlealpha_1rangle=-1.40,pm,0.03$ and $langlealpha_2rangle=-2.33,pm,0.04$. We conclude that neither a single nor a double power law is strongly favored over the other. The LFs show some variation when we separate the HII region sample into subsets by heliocentric distance, physical size, Galactocentric radius, and location relative to the spiral arms, but blending individual HII regions into larger complexes does not change the value of the power law indices of the best-fit LF models. The consistency of the power law indices across multiple wavelengths suggests that the LF is independent of wavelength. This implies that infrared and radio tracers can be employed in place of H$alpha$.
148 - S. Vig 2008
The physical conditions of the interstellar medium and stellar components in the regions of the southern Galactic star forming complexes associated with IRAS 10049-5657 and IRAS 10031-5632 have been investigated. These regions have been mapped simult aneously in two far infrared bands lambda_eff ~ 150 & 210 micron, with ~ 1 angular resolution using the TIFR 1-m balloon borne telescope. Spatial distribution of the temperature of cool dust and optical depth at 200 micron have been obtained. Using the 2MASS sources, the stellar populations of the embedded young clusters have been studied. A rich cluster of OB stars in the IRAS 10049-5657 region has been found with a cluster radius ~ 2 pc. The source in the cluster closest to the IRAS peak, lies above the ZAMS curve of spectral type O5 in the colour-magnitude diagram. Unlike IRAS 10049-5657, a small cluster comprising of a few deeply embedded sources is seen at the location of IRAS 10031-5632. Self consistent radiative transfer modelling aimed at extracting important physical and geometrical details of the two IRAS sources show that the best fit models are in good agreement with the observed spectral energy distributions. The geometric details of the associated cloud and optical depths (at 100 micron) have been estimated. A uniform density distribution of dust and gas is implied for both the sources. In addition, the infrared ionic fine-structure line emission from gas has been modelled for both these regions and compared with data from IRAS-Low Resolution Spectrometer. For IRAS 10049-5657, the observed and modelled luminosities for most lines agree to within a factor of four while for IRAS 10031-5632, we find a discrepancy of a factor of 100.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا