ﻻ يوجد ملخص باللغة العربية
We observed the Seyfert I active galaxy/broad line radio galaxy 3C120 with the Chandra high energy transmission gratings and present an analysis of the soft X-ray spectrum. We identify the strongest absorption feature (detected at >99.9% confidence) with O VIII Lya (FWHM=1010^{+295}_{-265} km/s), blueshifted by -5500 +/- 140 km/s from systemic velocity. The absorption may be due to missing baryons in warm/hot intergalactic medium (WHIGM) along the line-of-sight to 3C 120 at z=0.0147 +/- 0.0005, or it could be intrinsic to the jet of 3C 120. Assuming metallicities of 0.1 solar, we estimate an ionic column density of N_{O VIII}>3.4 times 10^{16} cm^{-2} for WHIGM and a filament depth of <19 h^{-1}_{70} Mpc. We find a baryon overdensity >56 relative to the critical density of a $Lambda$-dominated cold dark matter universe, which is in reasonable agreement with WHIGM simulations. We detect, at marginal significance, absorption of O VIII Lya at zsim 0 due to a hot medium in the Local Group. We also detect an unidentified absorption feature at sim 0.71 keV. Absorption features which might be expected along with O VIII Lya, were not significant statistically. Relative abundances of metals in the WHIGM and local absorbers may therefore be considerably different from solar.
Several popular cosmological models predict that most of the baryonic mass in the local universe is located in filamentary and sheet-like structures associated with groups and clusters of galaxies. This gas is expected to be gravitationally heated to
We assess the possibility to detect the warm-hot intergalactic medium (WHIM) in emission and to characterize its physical conditions and spatial distribution through spatially resolved X-ray spectroscopy, in the framework of the recently proposed DIO
We briefly review the use of UV absorption lines in the spectra of low-redshift QSOs for the study of the physical conditions, metallicity, and baryonic content of the low-z IGM, with emphasis on the missing baryons problem. Current results on the st
We present our XMM-Newton RGS observations of X Comae, an AGN behind the Coma cluster. We detect absorption by NeIX and OVIII at the redshift of Coma with an equivalent width of 3.3+/-1.8 eV and 1.7+/-1.3 eV, respectively (90% confidence errors or 2.
Time evolution of the ionization state of metals in the cosmic baryons is investigated in a cosmological context without the assumption of ionization equilibrium. We find that a significant fraction of ionized oxygen ions (OVII and OVIII) in the warm