ترغب بنشر مسار تعليمي؟ اضغط هنا

SN 2003du: Signatures of the Circumstellar Environment in a Normal Type Ia Supernova?

388   0   0.0 ( 0 )
 نشر من قبل Christopher Gerardy
 تاريخ النشر 2003
  مجال البحث فيزياء
والبحث باللغة English
 تأليف C. L. Gerardy




اسأل ChatGPT حول البحث

We present observations of the Type Ia supernova 2003du and report the detectionof an unusual, high-velocity component in the Ca II infrared triplet, similar tofeatures previously observed in SN 2000cx and SN 2001el. This feature exhibits a large expansion velocity (~18,000 km/s) which is nearly constant between -7 and +2 days relative to maximum light, and disappears shortly thereafter. Otherthan this feature, the spectral evolution and light curve resemble those of a normal SN Ia. We find that the Ca II feature can plausibly be caused by a dense shell formed when circumstellar material of solar abundance is overrun by the rapidly expanding outermost layers of the SN ejecta. Model calculations show that the optical and infrared spectra are remarkably unaffected by the circumstellar interaction. In particular, no hydrogen lines are detectable in either absorption or emission. The only qualitatively different features are the strong, high-velocity feature in the Ca II IR-triplet, and a somewhat weaker O I feature near 7,300 AA. The morphology and time evolution of these features provide an estimate for the amount of accumulated matter and an indication of the mixing in the dense shell. We apply these diagnostic tools to SN 2003du and infer that about 2 x 10^{-2} M_sun of solar abundance material may have accumulated in a circumstellar shell prior to the observations. Furthermore, the early light curve data imply that the circumstellar material was originally very close to the progenitor system, perhaps from an accretion disk, Roche lobe or common envelope.



قيم البحث

اقرأ أيضاً

An extensive set of optical and NIR photometry and low-resolution spectra the Type Ia supernova (SN Ia) 2003du was obtained using a number of facilities. The observations started 13 days before B-band maximum light and continued for 480 days with exc eptionally good time sampling. The optical photometry was calibrated through the S-correction technique. The UBVRIJHK light curves and the color indices of SN 2003du closely resemble those of normal SNe Ia. SN 2003du reached a B-band maximum of 13.49 (+/-0.02) mag on JD2452766.38 (+/-0.5). We derive a B-band stretch parameter of 0.988 (+/-0.003), which corresponds to dM15=1.02 (+/-0.05), indicative of a SN Ia of standard luminosity. The reddening in the host galaxy was estimated by three methods, and was consistently found to be negligible. We estimate a distance modulus of 32.79 (+/-0.15) mag to the host galaxy, UGC 9391. The peak UVOIR bolometric luminosity of 1.35(+/-0.20) 10^43 erg/s and Arnetts rule implies that M(Ni56)=0.68 (+/-0.14)M_sun of Ni56 was synthesized during the explosion. Modeling of the UVOIR bolometric light curve also indicates M(Ni56) in the range 0.6-0.8 M_sun. The spectral evolution of SN 2003du at both optical and NIR wavelengths also closely resembles normal SNe Ia. In particular, the Si II ratio at maximum R(Si II)=0.22 (+/-0.02) and the time evolution of the blueshift velocities of the absorption line minima are typical. The pre-maximum spectra of SN 2003du showed conspicuous high-velocity features in the Ca II H&K doublet and infrared triplet, and possibly in Si II 6355, lines. We compare the time evolution of the profiles of these lines with other well-observed SNe Ia and we suggest that the peculiar pre-maximum evolution of Si II 6355 line in many SNe Ia is due to the presence of two blended absorption components.
297 - Robert Quimby 2005
We present the spectral evolution, light curve, and corresponding interpretation for the normal-bright Type Ia Supernova 2005cg discovered by ROTSE-IIIc. The host is a low-luminosity (M_r = -16.75), blue galaxy with strong indications of active star formation and an environment similar to that expected for SNe Ia at high redshifts. Early-time (t ~ -10 days) optical spectra obtained with the HET reveal an asymmetric, triangular-shaped Si II absorption feature at about 6100 AA with a sharp transition to the continuum at a blue shift of about 24,000 km s^-1. By 4 days before maximum, the Si II absorption feature becomes symmetric with smoothly curved sides. Similar Si II profile evolution has previously been observed in other supernovae, and is predicted by some explosion models, but its significance has not been fully recognized. Although the spectra predicted by pure deflagration and delayed detonation models are similar near maximum light, they predict qualitatively different chemical abundances in the outer layers and thus give qualitatively different spectra at the earliest phases. The Si line observed in SN 2005cg at early times requires the presence of burning products at high velocities and the triangular shape is likely to be formed in an extended region of slowly declining Si abundance that characterizes delayed detonation models. The spectra show a high-velocity Ca II IR feature that coincides in velocity space with the Si II cutoff. This supports the interpretation that the Ca II is formed when the outer layers of the SN ejecta sweep up about 5 x 10^-3 M_sun of material within the progenitor system. (Abridged)
The Type~Ia supernova (SN~Ia) 2017cfd in IC~0511 (redshift z = 0.01209+- 0.00016$) was discovered by the Lick Observatory Supernova Search 1.6+-0.7 d after the fitted first-light time (FFLT; 15.2 d before B-band maximum brightness). Photometric and s pectroscopic follow-up observations show that SN~2017cfd is a typical, normal SN~Ia with a peak luminosity MB ~ -19.2+-0.2 mag, Delta m15(B) = 1.16 mag, and reached a B-band maximum ~16.8 d after the FFLT. We estimate there to be moderately strong host-galaxy extinction (A_V = 0.39 +- 0.03 mag) based on MLCS2k2 fitting. The spectrum reveals a Si~II lambda 6355 velocity of ~11,200 kms at peak brightness. The analysis shows that SN~2017cfd is a very typical, normal SN Ia in nearly every aspect. SN~2017cfd was discovered very young, with multiband data taken starting 2 d after the FFLT, making it a valuable complement to the currently small sample (fewer than a dozen) of SNe~Ia with color data at such early times. We find that its intrinsic early-time (B - V)0 color evolution belongs to the blue population rather than to the distinct red population. Using the photometry, we constrain the companion star radius to be < 2.5 R_sun, thus ruling out a red-giant companion.
Despite their cosmological utility, the progenitors of Type Ia supernovae (SNe Ia) are still unknown, with many efforts focused on whether accretion from a nondegenerate companion can grow a carbon-oxygen white dwarf to near the Chandrasekhar mass. T he association of SNe Ia resembling SN 1991T (91T-like) with circumstellar interaction may be evidence for this single-degenerate channel. However, the observed circumstellar medium (CSM) in these interacting systems is unlike a stellar wind -- of particular interest, it is sometimes detached from the stellar surface, residing at $sim 10^{16}~{rm cm}$. A Hubble Space Telescope (HST) program to discover detached CSM around 91T-like SNe Ia successfully discovered interaction nearly two years after explosion in SN 2015cp (Graham et al., 2018). In this work, we present radio and X-ray follow-up observations of SN 2015cp and analyze them in the framework of Harris, Nugent, & Kasen (2016) to limit the properties of a constant-density CSM shell in this system. Assuming the HST detection was shortly after the shock crossed the CSM, we constrain the total CSM mass in this system to be $< 0.5~{rm M_odot}$. This limit is comparable to the CSM mass of supernova PTF11kx, but does not rule out lower masses predicted for recurrent novae. From lessons learned modeling PTF11kx and SN 2015cp, we suggest a strategy for future observations of these events to increase the sample of known interacting SNe Ia.
128 - P.A. Mazzali 2015
A series of optical and one near-infrared nebular spectra covering the first year of the Type Ia supernova SN 2011fe are presented and modelled. The density profile that proved best for the early optical/ultraviolet spectra, rho-11fe, was extended to lower velocities to include the regions that emit at nebular epochs. Model rho-11fe is intermediate between the fast deflagration model W7 and a low-energy delayed-detonation. Good fits to the nebular spectra are obtained if the innermost ejecta are dominated by neutron-rich, stable Fe-group species, which contribute to cooling but not to heating. The correct thermal balance can thus be reached for the strongest [FeII] and [FeIII] lines to be reproduced with the observed ratio. The 56Ni mass thus obtained is 0.47 +/- 0.05 Mo. The bulk of 56Ni has an outermost velocity of ~8500 km/s. The mass of stable iron is 0.23 +/- 0.03 Mo. Stable Ni has low abundance, ~10^{-2} Mo. This is sufficient to reproduce an observed emission line near 7400 A. A sub-Chandrasekhar explosion model with mass 1.02 Mo and no central stable Fe does not reproduce the observed line ratios. A mock model where neutron-rich Fe-group species are located above 56Ni following recent suggestions is also shown to yield spectra that are less compatible with the observations. The densities and abundances in the inner layers obtained from the nebular analysis, combined with those of the outer layers previously obtained, are used to compute a synthetic bolometric light curve, which compares favourably with the light curve of SN 2011fe.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا