ﻻ يوجد ملخص باللغة العربية
The launch of the Chandra (NASA) and XMM-Newton (ESA) X-ray observatories in 1999 has revolutionized our view of the Universe, by providing astrophysical information about many classes of sources with unprecedent detail. The high throughput of XMM-Newton makes it the ideal instrument to provide low to moderate resolution spectroscopy of faint and extended sources. After 3 years of operations, XMM-Newton has observed many types of astronomical sources and delivered very interesting results in many areas. In this review, we highlight a few points where the contribution of XMM-Newton has significantly furthered our knowledge of the energetic Universe.
XMM-Newton has observed the X-ray sky since early 2000. The XMM-Newton Survey Science Centre Consortium has published catalogues of X-ray and ultraviolet sources found serendipitously in the individual observations. This series is now augmented by a
We have attempted to analyse all the available data taken by XMM-Newton as it slews between targets. This slew survey, the resultant source catalogue and the analysis procedures used are described in an accompanying paper. In this letter we present t
NA60 measured dimuon production in p-A and In-In collisions at the CERN SPS. This paper presents a high statistics measurement of $phi$ meson production in In-In collisions at 158 AGeV. Both the transverse momentum, rapidity, decay angular distributi
We have analysed four ASCA observations (1994--1995, 1996--1997) and three XMM-Newton observations (2005) of this source, in all of which the source is in high/soft state. We modeled the continuum spectra with relativistic disk model kerrbb, estimate
We investigate the properties of a variability-selected complete sample of AGN in order to identify the mechanisms which cause large amplitude X-ray variability on time scales of years. A complete sample of 24 sources was constructed, from AGN which