ترغب بنشر مسار تعليمي؟ اضغط هنا

The Hubble Constant from the Gravitational Lens B1608+656

113   0   0.0 ( 0 )
 نشر من قبل L. V. E. Koopmans
 تاريخ النشر 2003
  مجال البحث فيزياء
والبحث باللغة English
 تأليف L.V.E. Koopmans




اسأل ChatGPT حول البحث

We present a refined gravitational lens model of the four-image lens system B1608+656 based on new and improved observational constraints: (i) the three independent time-delays and flux-ratios from VLA observations, (ii) the radio-image positions from VLBA observations, (iii) the shape of the deconvolved Einstein Ring from optical and infrared HST images, (iv) the extinction-corrected lens-galaxy centroids and structural parameters, and (v) a stellar velocity dispersion, sigma_ap=247+-35 km/s, of the primary lens galaxy (G1), obtained from an echelle spectrum taken with the Keck--II telescope. The lens mass model consists of two elliptical mass distributions with power-law density profiles and an external shear, totaling 22 free parameters, including the density slopes which are the key parameters to determine the value of H_0 from lens time delays. This has required the development of a new lens code that is highly optimized for speed. The minimum-chi^2 model reproduces all observations very well, including the stellar velocity dispersion and the shape of the Einstein Ring. A combined gravitational-lens and stellar dynamical analysis leads to a value of the Hubble Constant of H_0=75(+7/-6) km/s/Mpc (68 percent CL; Omega_m=0.3, Omega_Lambda=0.7. The non-linear error analysis includes correlations between all free parameters, in particular the density slopes of G1 and G2, yielding an accurate determination of the random error on H_0. The lens galaxy G1 is ~5 times more massive than the secondary lens galaxy (G2), and has a mass density slope of gamma_G1=2.03(+0.14/-0.14) +- 0.03 (68 percent CL) for rho~r^-gamma, very close to isothermal (gamma=2). (Abridged)



قيم البحث

اقرأ أيضاً

Strong gravitational lensing is a powerful technique for probing galaxy mass distributions and for measuring cosmological parameters. We present a pixelated approach to modeling simultaneously the lens potential and source intensity of strong gravita tional lens systems with extended source-intensity distributions. For systems with sources of sufficient extent such that the separate lensed images are connected by intensity measurements, the accuracy in the reconstructed potential is solely limited by the quality of the data. We apply this potential reconstruction technique to deep HST observations of B1608+656, a four-image gravitational lens system formed by a pair of interacting lens galaxies. We present a comprehensive Bayesian analysis of the system that takes into account the extended source-intensity distribution, dust extinction, and the interacting lens galaxies. Our approach allows us to compare various models of the components of the lens system, which include the point-spread function (PSF), dust, lens galaxy light, source-intensity distribution, and lens potential. Using optimal combinations of the PSF, dust, and lens galaxy light models, we successfully reconstruct both the lens potential and the extended source-intensity distribution of B1608+656. The resulting reconstruction can be used as the basis of a measurement of the Hubble constant. We use our reconstruction of the gravitational potential to study the relative distribution of mass and light in the lensing galaxies. We find that the mass-to-light ratio for the primary lens galaxy is (2.0+/-0.2)h M_{sun} L_{B,sun}^{-1} within the Einstein radius 3.9 h^{-1} kpc, in agreement with what is found for noninteracting lens galaxies at the same scales. (Abridged)
137 - L. V. E. Koopmans 1999
EDITED FROM PAPER: We present mass models of the four-image gravitational lens system B1608+656. A mass model for the lens galaxies has been determined that reproduces the image positions, two out of three flux-density ratios and the model time delay s. Using the time delays determined by Fassnacht et al. (1999a), we find that the best isothermal mass model gives H_0=59^{+7}_{-6} km/s/Mpc for Omega_m=1 and Omega_l=0.0, or H_0=(65-63)^{+7}_{-6} km/s/Mpc for Omega_m=0.3 and Omega_l = 0.0-0.7 (95.4% statistical confidence). A systematic error of +/-15 km/s/Mpc is estimated. This cosmological determination of H_0 agrees well with determinations from three other gravitational lens systems (i.e. B0218+357, Q0957+561 and PKS1830-211), SNe Ia, the S-Z effect and local determinations. The current agreement on H_0 from four out of five gravitational lens systems (i) emphasizes the reliability of its determination from isolated gravitational lens systems and (ii) suggests that a close-to-isothermal mass profile can describe disk galaxies, ellipticals and central cluster ellipticals. The average of H_0 from B0218+357, Q0957+561, B1608+656 and PKS1830-211, gives H_0(GL)=69 +/-7 km/s/Mpc for a flat universe with Omega_m=1 or H_0(GL)=74 +/-8 km/s/Mpc for Omega_m=0.3 and Omega_l=0.0-0.7. When including PG1115+080, these values decrease to 64 +/-11 km/s/Mpc and 68 +/-13 km/s/Mpc (2-sigma errors), respectively.
95 - C.S. Kochanek 2003
There are now 10 firm time delay measurements in gravitational lenses. The physics of time delays is well understood, and the only important variable for interpreting the time delays to determine H_0 is the mean surface mass density <k> (in units of the critical density for gravitational lensing) of the lens galaxy at the radius of the lensed images. More centrally concentrated mass distributions with lower <k> predict higher Hubble constants, with H_0~1-<k> to lowest order. While we cannot determine <k> directly given the available data on the current time delay lenses, we find H_0=48+/-3 km/s/Mpc for the isothermal (flat rotation curve) models, which are our best present estimate for the mass distributions of the lens galaxies. Only if we eliminate the dark matter halo of the lenses and use a constant mass-to-light ratio (M/L) model to find H_0=71+/-3 km/s/Mpc is the result consistent with local estimates. Measurements of time delays in better-constrained systems or observations to obtain new constraints on the current systems provide a clear path to eliminating the <k> degeneracy and making estimates of H_0 with smaller uncertainties than are possible locally. Independent of the value of H_0, the time delay lenses provide a new and unique probe of the dark matter distributions of galaxies and clusters because they measure the total (light + dark) matter surface density.
107 - Paul L. Schechter 2004
Present day estimates of the Hubble constant based on Cepheids and on the cosmic microwave background radiation are uncertain by roughly 10% (on the conservative assumption that the universe may not be PERFECTLY flat). Gravitational lens time delay m easurements can produce estimates that are less uncertain, but only if a variety of major difficulties are overcome. These include a paucity of constraints on the lensing potential, the degeneracies associated with mass sheets and the central concentration of the lensing galaxy, multiple lenses, microlensing by stars, and the small variability amplitude typical of most quasars. To date only one lens meets all of these challenges. Several suffer only from the central concentration degeneracy, which may be lifted if one is willing to assume that systems with time delays are either like better constrained systems with non-variable sources, or alternatively, like nearby galaxies.
106 - Chris Fassnacht 2004
Compact groups of galaxies recently have been discovered in association with several strong gravitational lens systems. These groups provide additional convergence to the lensing potential and thus affect the value of H_0 derived from the systems. Le ns system time delays are now being measured with uncertainties of only a few percent or better. Additionally, vast improvements are being made in incorporating observational constraints such as Einstein ring structures and stellar velocity dispersions into the lens models. These advances are reducing the uncertainties on H_0 to levels at which the the effects of associated galaxy groups may contribute significantly to the overall error budget. We describe a dedicated multiwavelength program, using Keck, HST, and Chandra, to find such groups and measure their properties. We present, as a case study, results obtained from observations of the CLASS lens system B1608+656 and discuss the implications for the value of H_0 derived from this system.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا