ترغب بنشر مسار تعليمي؟ اضغط هنا

CVcat: an interactive database on cataclysmic variables

100   0   0.0 ( 0 )
 نشر من قبل Boris Gaensicke
 تاريخ النشر 2003
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

CVcat is a database that contains published data on cataclysmic variables and related objects. Unlike in the existing online sources, the users are allowed to add data to the catalogue. The concept of an ``open catalogue approach is reviewed together with the experience from one year of public usage of CVcat. New concepts to be included in the upcoming AstroCat framework and the next CVcat implementation are presented. CVcat can be found at http://www.cvcat.org.



قيم البحث

اقرأ أيضاً

We report on the progress of the development of CVcat, an interactive catalogue on Cataclysmic Variables, which is the first application based on AstroCat, a general framework for the installation and maintenance of web-based interactive astronomical databases. Registered users can contribute directly to the catalogue content by adding new objects, object properties, literature references, and annotations. The scientific quality control of the catalogue is carried out by a distributed editorial team. Searches in CVcat can be performed by object name, classification, certain properties or property ranges, and coordinates. Search results can be retrieved in several output formats, including XML. Old database states can be restored in order to ensure the citability of the catalogue. Furthermore, CVcat is designed to serve as a repository for reduced data from publications. Future prospects include the integration of AstroCat-based catalogues in the international network of Virtual Observatories.
99 - S. Cassisi 2005
We present a new database of stellar evolution models for a large range of masses and chemical compositions, based on an up-to-date theoretical framework. We briefly discuss the physical inputs and the assumptions adopted in computing the stellar mod els. We explain how to access to the on-line archive and briefly discuss the interactive WEB tools that can be used to compute user-specified evolutionary tracks/isochrones/luminosity functions. The future developments of this database are also outlined.
We explore the observational appearance of the merger of a low-mass star with a white dwarf (WD) binary companion. We are motivated by Schreiber et al. (2016), who found that multiple tensions between the observed properties of cataclysmic variables (CVs) and standard evolution models are resolved if a large fraction of CV binaries merge as a result of unstable mass transfer. Tidal disruption of the secondary forms a geometrically thick disk around the WD, which subsequently accretes at highly super-Eddington rates. Analytic estimates and numerical hydrodynamical simulations reveal that outflows from the accretion flow unbind a large fraction >~ 90% of the secondary at velocities ~500-1000 km/s within days of the merger. Hydrogen recombination in the expanding ejecta powers optical transient emission lasting about a month with a luminosity > 1e38 erg/s, similar to slow classical novae and luminous red novae from ordinary stellar mergers. Over longer timescales the mass accreted by the WD undergoes hydrogen shell burning, inflating the remnant into a giant of luminosity ~300-5000 L_sun, effective temperature T_eff ~ 3000 K and lifetime ~1e4-1e5 yr. We predict that ~1e3-1e4 Milky Way giants are CV merger products, potentially distinguishable by atypical surface abundances. We explore whether any Galactic historical slow classical novae are masquerading CV mergers by identifying four such post-nova systems with potential giant counterparts for which a CV merger origin cannot be ruled out. We address whether the historical transient CK Vul and its gaseous/dusty nebula resulted from a CV merger.
Accreting white dwarfs (WDs) constitute a significant fraction of the hard X-ray sources detected by the INTEGRAL observatory. Most of them are magnetic Cataclysmic Variables (CVs) of the intermediate polar (IP) and polar types, but the contribution of the Nova-likes systems and the systems with optically thin boundary layers, Dwarf Novae (DNs) and Symbiotic Binaries (or Symbiotic Stars, SySs) in quiescence is also not negligible. Here we present a short review of the results obtained from the observations of cataclysmic variables and symbiotic binaries by INTEGRAL. The highlight results include the significant increase of the known IP population, determination of the WD mass for a significant fraction of IPs, the establishment of the luminosity function of magnetic CVs, and uncovering origin of the Galactic ridge X-ray emission which appears to largely be associated with hard emission from magnetic CVs.
156 - Christian Knigge 2011
I review our current understanding of the evolution of cataclysmic variables (CVs). I first provide a brief introductory CV primer, in which I describe the physical structure of CVs, as well as their astrophysical significance. The main part of the r eview is divided into three parts. The first part outlines the theoretical principles of CV evolution, focusing specifically on the standard disrupted magnetic braking model. The second part describes how some of the most fundamental predictions this model are at last being test observationally. Finally, the third part describes recent efforts to actually reconstruct the evolution path of CVs empirically. Some of these efforts suggest that angular momentum loss below the period gap must be enhanced relative to the purely gravitational-radiation-driven losses assumed in the standard model.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا