ترغب بنشر مسار تعليمي؟ اضغط هنا

Mapping of Large Scale 158 micron [CII] Line Emission: Orion A

218   0   0.0 ( 0 )
 نشر من قبل Bhaswati Mookerjea
 تاريخ النشر 2003
  مجال البحث فيزياء
والبحث باللغة English
 تأليف B. Mookerjea




اسأل ChatGPT حول البحث

We present the first results of an observational programme undertaken to map the fine structure line emission of singly ionized carbon ([CII] 157.7409 micron) over extended regions using a Fabry Perot spectrometer newly installed at the focal plane of a 100cm balloon-borne far-infrared telescope. This new combination of instruments has a velocity resolution of ~200 km/s and an angular resolution of 1.5. During the first flight, an area of 30x15 in Orion A was mapped. The observed [CII] intensity distribution has been compared with the velocity-integrated intensity distributions of 13CO(1-0), CI(1-0) and CO(3-2) from the literature. The observed line intensities and ratios have been analyzed using the PDR models by Kaufman et al. 1999 to derive the incident UV flux and volume density at a few selected positions.



قيم البحث

اقرأ أيضاً

The [CII] fine structure transition at 158 microns is the dominant cooling line of cool interstellar gas, and is the brightest of emission lines from star forming galaxies from FIR through meter wavelengths. With the advent of ALMA and NOEMA, capable of detecting [CII]-line emission in high-redshift galaxies, there has been a growing interest in using the [CII] line as a probe of the physical conditions of the gas in galaxies, and as a SFR indicator at z>4. In this paper, we use a semi-analytical model of galaxy evolution (G.A.S.) combined with the code CLOUDY to predict the [CII] luminosity of a large number of galaxies at 4< z<8. At such high redshift, the CMB represents a strong background and we discuss its effects on the luminosity of the [CII] line. We study the LCII-SFR and LCII-Zg relations and show that they do not strongly evolve with redshift from z=4 and to z=8. Galaxies with higher [CII] luminosities tend to have higher metallicities and higher star formation rates but the correlations are very broad, with a scatter of about 0.5 dex for LCII-SFR. Our model reproduces the LCII-SFR relations observed in high-redshift star-forming galaxies, with [CII] luminosities lower than expected from local LCII-SFR relations. Accordingly, the local observed LCII-SFR relation does not apply at high-z. Our model naturally produces the [CII] deficit, which appears to be strongly correlated with the intensity of the radiation field in our simulated galaxies. We then predict the [CII] luminosity function, and show that it has a power law form in the range of LCII probed by the model with a slope alpha=1. The slope is not evolving from z=4 to z=8 but the number density of [CII]-emitters decreases by a factor of 20x. We discuss our predictions in the context of current observational estimates on both the differential and cumulative luminosity functions.
The [CII] $158,mumathrm{m}$ fine-structure line is one of the dominant coolants of the neutral interstellar medium. It is hence one of the brightest far-infrared emission lines and can be observed not only in star-forming regions throughout the Galax y, but also in the diffuse interstellar medium and in distant galaxies. [CII] line emission has been suggested to be a powerful tracer of star-formation. We aim to understand the origin of [CII] emission and its relation to other tracers of interstellar gas and dust. This includes a study of the heating efficiency of interstellar gas as traced by the [CII] line to test models of gas heating. We make use of a one-square-degree map of velocity-resolved [CII] line emission towards the Orion Nebula complex, including M43 and NGC 1977. The [CII] intensity is tightly correlated with PAH emission in the IRAC $8,mumathrm{m}$ band and far-infrared emission from warm dust. The correlation between [CII] and CO(2-1) is affected by the detailed geometry of the region. We find particularly low [CII]-over-FIR intensity ratios towards large columns of (warm and cold) dust, which suggest the interpretation of the [CII] deficit in terms of a FIR excess. A slight decrease in the FIR line-over-continuum intensity ratio can be attributed to a decreased heating efficiency of the gas. We find that, at the mapped spatial scales, predictions of the star-formation rate from [CII] emission underestimate the star-formation rate calculated from YSO counts in the Orion Nebula complex by an order of magnitude. [CII] emission from the Orion Nebula complex arises dominantly in the cloud surfaces, many viewed in edge-on geometry. [CII] emission from extended faint cloud surfaces may contribute significantly to the total [CII] emission on galactic scales.
231 - Marcel Neeleman 2018
We report on a search for the [CII] 158 micron emission line from galaxies associated with four high-metallicity damped Ly-alpha absorbers (DLAs) at z ~ 4 using the Atacama Large Millimeter/sub-millimeter Array (ALMA). We detect [CII] 158 micron emis sion from galaxies at the DLA redshift in three fields, with one field showing two [CII] emitters. Combined with previous results, we now have detected [CII] 158 micron emission from five of six galaxies associated with targeted high-metallicity DLAs at z ~ 4. The galaxies have relatively large impact parameters, ~16 - 45 kpc, [CII] 158 micron line luminosities of (0.36 - 30) x 10^8 Lsun, and rest-frame far-infrared properties similar to those of luminous Lyman-break galaxies, with star-formation rates of ~7 - 110 Msun yr-1. Comparing the absorption and emission line profiles yields a remarkable agreement between the line centroids, indicating that the DLA traces gas at velocities similar to that of the [CII] 158 micron emission. This disfavors a scenario where the DLA arises from gas in a companion galaxy. These observations highlight ALMAs unique ability to uncover a high redshift galaxy population that has largely eluded detection for decades.
126 - N. Schneider 2012
Molecular globules and pillars are spectacular features, found only in the interface region between a molecular cloud and an HII-region. Impacting Far-ultraviolet (FUV) radiation creates photon dominated regions (PDRs) on their surfaces that can be t raced by typical cooling lines. With the GREAT receiver onboard SOFIA we mapped and spectrally resolved the [CII] 158 micron atomic fine-structure line and the highly excited 12CO J=11-10 molecular line from three objects in Cygnus X (a pillar, a globule, and a strong IRAS source). We focus here on the globule and compare our data with existing Spitzer data and recent Herschel Open-Time PACS data. Extended [CII] emission and more compact CO-emission was found in the globule. We ascribe this emission mainly to an internal PDR, created by a possibly embedded star-cluster with at least one early B-star. However, external PDR emission caused by the excitation by the Cyg OB2 association cannot be fully excluded. The velocity-resolved [CII] emission traces the emission of PDR surfaces, possible rotation of the globule, and high-velocity outflowing gas. The globule shows a velocity shift of ~2 km/s with respect to the expanding HII-region, which can be understood as the residual turbulence of the molecular cloud from which the globule arose. This scenario is compatible with recent numerical simulations that emphazise the effect of turbulence. It is remarkable that an isolated globule shows these strong dynamical features traced by the [CII]-line, but it demands more observational studies to verify if there is indeed an embedded cluster of B-stars.
77 - Marcel Neeleman 2017
Gas surrounding high redshift galaxies has been studied through observations of absorption line systems toward background quasars for decades. However, it has proven difficult to identify and characterize the galaxies associated with these absorbers due to the intrinsic faintness of the galaxies compared to the quasars at optical wavelengths. Utilizing the Atacama Large Millimeter/Submillimeter Array, we report on detections of [CII] 158 micron line and dust continuum emission from two galaxies associated with two such absorbers at a redshift of z~4. Our results indicate that the hosts of these high-metallicity absorbers have physical properties similar to massive star-forming galaxies and are embedded in enriched neutral hydrogen gas reservoirs that extend well beyond the star-forming interstellar medium of these galaxies.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا