ﻻ يوجد ملخص باللغة العربية
We study the effect of large scale tangled magnetic fields on the galaxy two-point correlation function in the redshift space. We show that (a) the magnetic field effects can be comparable the gravity-induced clustering for present magnetic field strength $B_0 simeq 5 times 10^{-8}$ G, (b) the absence of this signal from the present data gives an upper bound $B_0 la 3 times 10^{-8}$ G, (c) the future data can probe the magnetic fields of $simeq 10^{-8}$ G. A comparison with other constraints on the present magnetic field shows that they are marginally compatible.However if the magenetic fields corresponding to $B_0 simeq 10^{-8}$ G existed at the last scattering surface they will cause unacceptably large CMBR anisotropies.
We perform theoretical and numerical studies of the full relativistic two-point galaxy correlation function, considering the linear-order scalar and tensor perturbation contributions and the wide-angle effects. Using the gauge-invariant relativistic
We present measurements of the normalised redshift-space three-point correlation function (Q_z) of galaxies from the Sloan Digital Sky Survey (SDSS) main galaxy sample. We have applied our npt algorithm to both a volume-limited (36738 galaxies) and m
We investigate the properties of the 2-point galaxy correlation function at very large scales, including all geometric and local relativistic effects -- wide-angle effects, redshift space distortions, Doppler terms and Sachs-Wolfe type terms in the g
We study the two-point correlation function of density perturbations in a spherically symmetric void universe model which does not employ the Copernican principle. First we solve perturbation equations in the inhomogeneous universe model and obtain d
The two-point correlation function of the galaxy distribution is a key cosmological observable that allows us to constrain the dynamical and geometrical state of our Universe. To measure the correlation function we need to know both the galaxy positi