ﻻ يوجد ملخص باللغة العربية
The lightest supersymmetric particle, most likely the lightest neutralino, is one of the most prominent particle candidates for cold dark matter (CDM). We show that the primordial spectrum of density fluctuations in neutralino CDM has a sharp cut-off, induced by two different damping mechanisms. During the kinetic decoupling of neutralinos, non-equilibrium processes constitute viscosity effects, which damp or even absorb density perturbations in CDM. After the last scattering of neutralinos, free streaming induces neutralino flows from overdense to underdense regions of space. Both damping mechanisms together define a minimal mass scale for perturbations in neutralino CDM, before the inhomogeneities enter the nonlinear epoch of structure formation. We find that the very first gravitationally bound neutralino clouds ought to have masses above 10^{-6} solar masses, which is six orders of magnitude above the mass of possible axion miniclusters.
The dark energy plus cold dark matter ($Lambda$CDM) cosmological model has been a demonstrably successful framework for predicting and explaining the large-scale structure of Universe and its evolution with time. Yet on length scales smaller than $si
The {Lambda} cold dark matter ({Lambda}CDM) paradigm of galaxy formation predicts that dense spheroidal stellar structures invariably grow at early cosmic time. These primordial spheroids evolve toward a virialized dynamical status as they finally be
The adiabatic perturbation of dark matter is damped during the kinetic decoupling due to the collision with relativistic component on sub-horizon scales. However the isocurvature part is free from damping and could be large enough to make a substanti
We present the first simulations within an effective theory of structure formation (ETHOS), which includes the effect of interactions between dark matter and dark radiation on the linear initial power spectrum and dark matter self-interactions during
We investigate the degree to which the inclusion of baryonic physics can overcome two long-standing problems of the standard cosmological model on galaxy scales: (i) the problem of satellite planes around Local Group galaxies, and (ii) the too big to