ﻻ يوجد ملخص باللغة العربية
Transient X-ray emission, with an approximate t^{-0.7} decay, was observed from SGR 1900+14 over 40 days following the the giant flare of 27 Aug 1998. We calculate in detail the diffusion of heat to the surface of a neutron star through an intense 10^{14}-10^{15} G magnetic field, following the release of magnetic energy in its outer layers. We show that the power law index, the fraction of burst energy in the afterglow, and the return to persistent emission can all be understood if the star is composed of normal baryonic material.
We study the thermal structure and evolution of magnetars as cooling neutron stars with a phenomenological heat source in an internal layer. We focus on the effect of magnetized (B > 10^{14} G) non-accreted and accreted outermost envelopes composed o
We study thermal structure and evolution of magnetars as cooling neutron stars with a phenomenological heat source in a spherical internal layer. We explore the location of this layer as well as the heating rate that could explain high observable the
We discuss an article by Steven Weinberg expressing his discontent with the usual ways to understand quantum mechanics. We examine the two solutions that he considers and criticizes and propose another one, which he does not discuss, the pilot wave t
Concept drift is a phenomenon in which the distribution of a data stream changes over time in unforeseen ways, causing prediction models built on historical data to become inaccurate. While a variety of automated methods have been developed to identi
Magnetars are young and highly magnetized neutron stars which display a wide array of X-ray activity including short bursts, large outbursts, giant flares and quasi-periodic oscillations, often coupled with interesting timing behavior including enhan