ﻻ يوجد ملخص باللغة العربية
A comprehensive study of relativistic and resonance effects in electron impact excitation of (e+Fe XVII) is carried out using the BPRM method in the relativistic close coupling approximation. Two sets of eigenfunction expansions are employed; first, up to the n = 3 complex corresponding 37 fine-structure levels (37CC) from 21 LS terms; second, up to the n = 4 corresponding to 89 fine-structure levels (89CC) from 49 LS terms. In contrast to previous works, the 37CC and the 89CC collision strengths exhibit considerable differences. Denser and broader resonances due to n = 4 are present in the 89CC results both above and {it below} the 37 thresholds, thus significantly affecting the collision strengths for the primary X-ray and EUV transitions within the first 37 n = 3 levels. Extensive study of other effects on the collision strengths is also reported: (i) electric and magnetic multipole transitions E1, E2, E3 and M1, M2, (ii) J-partial wave convergence of dipole and non-dipole transitions, (iii) high energy behaviour compared to other approximations. Theortical results are benchmarked against experiments to resolve longstanding discrepancies -- collision strengths for the three prominent X-ray lines 3C, 3D and 3E at 15.014, 15.265, and 15.456 AA are in good agreement with two independent measurements on Electron-Beam-Ion-Traps (EBIT). Finally, line ratios from a collisional-radiative model using the new collisional rates are compared with observations from stellar coronae and EBITs to illustrate potential applications in laboratory and astrophysical plasmas.
There are major discrepancies between recent B-spline R-matrix (BSR) and Dirac Atomic R-matrix Code (DARC) calculations regarding electron-impact excitation rates for transitions in Mg$^{4+}$, with claims that the DARC calculations are much more accu
We present benchmark integrated and differential cross-sections for electron collisions with H$_2$ using two different theoretical approaches, namely, the R-matrix and molecular convergent close-coupling (MCCC). This is similar to comparative studies
We present results for the electron-impact excitation of highly-charged sulphur ions (S8+ - S11+) obtained using the intermediate-coupling frame transformation R-matrix approach. A detailed comparison of the target structure has been made for the fou
Neutral tungsten is the primary candidate as a wall material in the divertor region of the International Thermonuclear Experimental Reactor (ITER). The efficient operation of ITER depends heavily on precise atomic physics calculations for the determi
Emission and absorption features from C-like ions serve as temperature and density diagnostics of astrophysical plasmas. $R$-matrix electron-impact excitation data sets for C-like ions in the literature merely cover a few ions, and often only for the