ﻻ يوجد ملخص باللغة العربية
Searching for transits provides a very promising technique for finding close-in extra-solar planets. Transiting planets present the advantage of allowing one to determine physical properties such as mass and radius unambiguously. The EXPLORE (EXtra-solar PLanet Occultation REsearch) project is a transit search project carried out using wide-field CCD imaging cameras on 4-m class telescopes, and 8-10m class telescopes for radial velocity verification of the photometric candidates. We describe some of the considerations that go into the design of the EXPLORE transit search to maximize the discovery rate and minimize contaminating objects that mimic transiting planets. We show that high precision photometry (2 to 10 millimag) and high time sampling (few minutes) are crucial for sifting out contaminating signatures, such as grazing binaries. We have completed two searches using the 8k MOSAIC camera at the CTIO4m and the CFH12k camera at CFHT, with runs covering 11 and 16 nights, respectively. We obtained preliminary light curves for approximately 47,000 stars with better than ~1% photometric precision. A number of light curves with flat-bottomed eclipses consistent with being produced by transiting planets has been discovered. Preliminary results from follow-up spectroscopic observations using the VLT UVES spectrograph and the Keck HIRES spectrograph obtained for a number of the candidates are presented. Data from four of these can be interpreted consistently as possible planet candidates, although further data are still required for definitive confirmations.
(Abridged) We discuss the design considerations of the EXPLORE (EXtra-solar PLanet Occultation REsearch) project, a series of transiting planet searches using 4-m-class telescopes to continuously monitor a single field of stars in the Galactic Plane
One of the obstacles in the search for exoplanets via transits is the large number of candidates that must be followed up, few of which ultimately prove to be exoplanets. Any method that could make this process more efficient by somehow identifying t
The EXPLORE Project is a series of searches for transiting extrasolar planets using large-format mosaic CCD cameras on 4-m class telescopes. Radial velocity follow-up is done on transiting planet candidates with 8--10m class telescopes. We present a
We present preliminary results from our spectroscopic search for planets within 1 AU of metal-poor field dwarfs using NASA time with HIRES on Keck I. The core accretion model of gas giant planet formation is sensitive to the metallicity of the raw ma
We present a model of the stellar populations in the fields observed by one of the SuperWASP-N cameras in the 2004 observing season. We use the Besancon Galactic model to define the range of stellar types and metallicities present, and populate these