We first discuss why the uncomfortable fine-tuning of the parameters of the Lambda-CDM cosmological model provides continuing, strong motivation to investigate Hubbles Constant. Then we review evidence from the HST Key Project that there is a significant scale error between raw Cepheid and Tully-Fisher distances. An analysis of mainly HST Distance Scale Key Project data shows a correlation between host galaxy metallicity and the rms scatter around the Cepheid P-L relation, which may support a recent suggestion that the P-L metallicity dependence is stronger than expected. If Cepheids do have a significant metallicity dependence then the Tully-Fisher scale error increases and the distances of the Virgo and Fornax clusters extend to more than 20Mpc, decreasing the value of Ho. Finally, if the Cepheids have a metallicity dependence then so do Type Ia Supernovae since the metallicity corrected Cepheid distances to eight galaxies with SNIa would then suggest that the SNIa peak luminosity is fainter in metal poor galaxies, with important implications for SNIa estimates of qo as well as Ho.