ترغب بنشر مسار تعليمي؟ اضغط هنا

HST/STIS Spectroscopy of the Optical Outflow from DG Tau: Indications for Rotation in the Initial Jet Channel

97   0   0.0 ( 0 )
 نشر من قبل Francesca Bacciotti
 تاريخ النشر 2002
  مجال البحث فيزياء
والبحث باللغة English
 تأليف F. Bacciotti




اسأل ChatGPT حول البحث

We have carried out a kinematical, high angular resolution (~ 0.1) study of the jet from DG Tau within 0.5 from the source (or 110 AU along this flow). We analysed line profiles extracted from a set of seven spectra taken with STIS on board the Hubble Space Telescope, with the slits parallel to the jet axis but displaced transversely every 0.07. For the flow of moderate velocity (-70 km/s), we have found systematic differences in the radial velocities of lines emitted on alternate sides of the jet axis. The results are corrected for the effects due to uneven illumination of the slit. The relative Doppler shifts range from 5 to 20 km/s. If this is interpreted as rotation, the flow is then rotating clockwise looking from the jet towards the source and the derived toroidal velocities are in the range 6 - 15 km/s. Using recent estimates of the mass loss rate, one obtains for the considered velocity regime, an angular momentum flux of ~ 3.8x10E-5 M_sun/yr AU km/s. Our findings may constitute the first detection of rotation in the initial channel of a jet flow. The derived values appear to be consistent with the predictions of popular magneto-centrifugal jet-launching models, although we cannot exclude transverse outflow asymmetries other than rotation.



قيم البحث

اقرأ أيضاً

We have carried out a spatio-kinematic study of the outflow from the classical T Tauri star DG Tau using the Space Telescope Imaging Spectrograph (STIS) on board the Hubble Space Telescope (HST). A series of seven spatially offset long-slit spectra s paced by 0.07 were obtained along the axis of the outflow to build up a 3-D intensity-velocity ``cube in various forbidden emission lines (FELs) and Ha. Here we present high spatial resolution synthetic line images close to the star in distinct radial velocity intervals (from ~ +50 km/s to ~ -450 km/s in four bins, each ~ 125 km/s wide). The lowest velocity emission is also examined in finer detail (from +60 km/s to -70 km/s in five bins ~ 25 km/s wide). We have found that the highest velocity and most highly collimated component, i.e. the jet, can be traced from DG Tau to a distance D ~ 0.7. The jet is on the axis of a pear-shaped limb-brightened bubble which extends between 0.4 and 1.5 from the source and which we interpret as a bow shock. Other condensations are seen close to the star indicating ongoing temporal variations in the flow. The low-velocity component of the outflow is found to be spatially wide close to the source (~ 0.2 at D=0.2), in contrast to the high velocity jet (width <~ 0.1). We have also found evidence to suggest that the density increases longitudinally with proximity to the source and also laterally towards the flow axis. Thus, at least in the case of DG Tau, the flow becomes gradually denser as it increases in velocity and becomes more collimated. Our observations show a continous bracketing of the higher speed central flow within the lower speed, less collimated, broader flow, down to the lowest velocity scales. This suggests that the low and high velocity FELs in the highly active T Tauri star DG Tau are intimately related.
We present $^{12}$CO(2-1) line and 1300 $mu$m continuum observations made with the Submillimeter Array (SMA) of the young star DG Tau B. We find, in the continuum observations, emission arising from the circumstellar disk surrounding DG Tau B. The $^ {12}$CO(2-1) line observations, on the other hand, revealed emission associated with the disk and the asymmetric outflow related with this source. Velocity asymmetries about the flow axis are found over the entire length of the flow. The amplitude of the velocity differences is of the order of 1 -- 2 km s$^{-1}$ over distances of about 300 -- 400 AU. We interpret them as a result of outflow rotation. The sense of the outflow and disk rotation is the same. Infalling gas from a rotating molecular core cannot explain the observed velocity gradient within the flow. Magneto-centrifugal disk winds or photoevaporated disk winds can produce the observed rotational speeds if they are ejected from a keplerian disk at radii of several tens of AU. Nevertheless, these slow winds ejected from large radii are not very massive, and cannot account for the observed linear momentum and angular momentum rates of the molecular flow. Thus, the observed flow is probably entrained material from the parent cloud. DG Tau B is a good laboratory to model in detail the entrainment process and see if it can account for the observed angular momentum.
We present preliminary results on the low-redshift Lyman alpha forest as based on STIS spectra of 3C 273. A total of 121 intergalactic Lyman alpha-absorbing systems were detected, of which 60 are above the 3.5 sigma completness limit, log N(HI)~12.3. The median Doppler parameter, b=27 km/s, is similar to that seen at high redshift. However the distribution of HI column densities (dN/dN(HI) propto N(HI)^-beta) has a steeper slope, beta = 2.02 +- 0.21, than is seen at high redshift. Overall, the observed N(HI)-b distribution is consistent with that derived from a Lambda CDM hydrodynamic simulation.
Considerable uncertainties remain about the nature of warm, AGN-driven outflows and their impact on the evolution of galaxies. This is because the outflows are often unresolved in ground-based observations. As part of a project to study the AGN outfl ows in some of the most rapidly evolving galaxies in the local Universe, here we present HST/STIS observations of F14394+5332E that resolve the sub-kpc warm outflow for the first time in a ULIRG. The observations reveal a compact, high-ionization outflow region (r_max~0.9 kpc) set in a more extensive (r_max~1.4 kpc) halo that is kinematically quiescent and has a lower ionization state. A large line width (600 < FWHM < 1500 km/s) is measured throughout the outflow region, and the outflowing gas shows a steep velocity gradient with radius, with the magnitude of the blueshifted velocities increasing from ~500 to 1800 km/s from the inner to the outer part of the outflow. We interpret the observations in terms of the local acceleration, and hydrodynamic destruction, of dense clouds as they are swept up in a hot, low density wind driven by the AGN. We discuss the implications for measuring the mass outflow rates and kinetic powers for the AGN-driven outflows in such objects.
We present Hubble Space Telescope Imaging Spectrograph long-slit spectroscopy of the emission line nebulae in the compact steep spectrum radio sources 3C 67, 3C 277.1, and 3C 303.1. We derive BPT (Baldwin- Philips-Terlevich; Baldwin et al. 1981) diag nostic emission line ratios for the nebulae which are consistent with a mix of shock excitation and photoionization in the extended gas. In addition, line ratios indicative of lower ionization gas are found to be associated with higher gas velocities. The results are consistent with a picture in which these galaxy scale radio sources interact with dense clouds in the interstellar medium of the host galaxies, shocking the clouds thereby ionizing and accelerating them.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا