ﻻ يوجد ملخص باللغة العربية
Young stars in the disks of galaxies produce HI from their parent H2 clouds by photodissociation. This process is widespread in late-type galaxies, and follows the distribution of Far-UV photons produced primarily by B-type stars. An estimate of the amount of dissociated gas can be made using observed Far-UV fluxes and simple approximations for the physics of photodissociation. This leads to the startling conclusion that much, and perhaps even all, of the HI in galaxy disks can be produced in this way. This result offers a simple, but inverse, cause-effect explanation for the ``Schmidt Law of Global Star Formation in galaxies.
Measurements of H-alpha, HI, and CO distributions in 61 normal spiral galaxies are combined with published far-infrared and CO observations of 36 infrared-selected starburst galaxies, in order to study the form of the global star formation law, over
We compile observations of molecular gas contents and infrared-based star formation rates (SFRs) for 112 circumnuclear star forming regions, in order to re-investigate the form of the disk-averaged Schmidt surface density star formation law in starbu
Young stars in the disks of galaxies produce HI from their parent H2 clouds by photodissociation. This paper describes the observational evidence for and the morphology of such HI. Simple estimates of the amount of dissociated gas lead to the startli
We study the global star formation law - the relation between the gas and star formation rate (SFR) in a sample of 130 local galaxies with infrared (IR) luminosities spanning over three orders of magnitude (10^9-10^12 Lsun), which includes 91 normal
We use a new method to trace backwards the star formation history of the Milky Way disk, using a sample of M dwarfs in the solar neighbourhood which is representative for the entire solar circle. M stars are used because they show H_alpha emission un