ترغب بنشر مسار تعليمي؟ اضغط هنا

Cosmic Microwave Background Anisotropy Measurement From Python V

112   0   0.0 ( 0 )
 نشر من قبل Kimberly A. Coble
 تاريخ النشر 2001
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We analyze observations of the microwave sky made with the Python experiment in its fifth year of operation at the Amundsen-Scott South Pole Station in Antarctica. After modeling the noise and constructing a map, we extract the cosmic signal from the data. We simultaneously estimate the angular power spectrum in eight bands ranging from large (l ~ 40) to small (l ~ 260) angular scales, with power detected in the first six bands. There is a significant rise in the power spectrum from large to smaller (l ~ 200) scales, consistent with that expected from acoustic oscillations in the early Universe. We compare this Python V map to a map made from data taken in the third year of Python. Python III observations were made at a frequency of 90 GHz and covered a subset of the region of the sky covered by Python V observations, which were made at 40 GHz. Good agreement is obtained both visually (with a filtered version of the map) and via a likelihood ratio test.



قيم البحث

اقرأ أيضاً

We constrain Galactic foreground contamination of the Python V cosmic microwave background anisotropy data by cross correlating it with foreground contaminant emission templates. To model foreground emission we use 100 and 12 $mu$m dust emission temp lates and two point source templates based on the PMN survey. The analysis takes account of inter-modulation correlations in 8 modulations of the data that are sensitive to a large range of angular scales and also densely sample a large area of sky. As a consequence the analysis here is highly constraining. We find little evidence for foreground contamination in an analysis of the whole data set. However, there is indication that foregrounds are present in the data from the larger-angular-scale modulations of those Python V fields that overlap the region scanned earlier by the UCSB South Pole 1994 experiment. This is an independent consistency cross-check of findings from the South Pole 1994 data.
130 - K. Coble , M. Dragovan , J. Kovac 1999
Observations of the microwave sky using the Python telescope in its fifth season of operation at the Amundsen-Scott South Pole Station in Antarctica are presented. The system consists of a 0.75 m off-axis telescope instrumented with a HEMT amplifier- based radiometer having continuum sensitivity from 37-45 GHz in two frequency bands. With a 0.91 deg x 1.02 deg beam the instrument fully sampled 598 deg^2 of sky, including fields measured during the previous four seasons of Python observations. Interpreting the observed fluctuations as anisotropy in the cosmic microwave background, we place constraints on the angular power spectrum of fluctuations in eight multipole bands up to l ~ 260. The observed spectrum is consistent with both the COBE experiment and previous Python results. There is no significant contamination from known foregrounds. The results show a discernible rise in the angular power spectrum from large (l ~ 40) to small (l ~ 200) angular scales. The shape of the observed power spectrum is not a simple linear rise but has a sharply increasing slope starting at l ~ 150.
145 - Kimberly Ann Coble 1999
Observations of the microwave sky using the Python telescope in its fifth season of operation at the Amundsen-Scott South Pole Station in Antarctica are presented. The system consists of a 0.75 m off-axis telescope instrumented with a HEMT amplifier- based radiometer having continuum sensitivity from 37-45 GHz in two frequency bands. With a $0.91^{circ} times 1.02^{circ} $ beam the instrument fully sampled 598 deg$^2$ of sky, including fields measured during the previous four seasons of Python observations. Interpreting the observed fluctuations as anisotropy in the cosmic microwave background, we place constraints on the angular power spectrum of fluctuations in eight multipole bands up to $l sim 260$. The observed spectrum is consistent with both the COBE experiment and previous Python results. Total-power Wiener-filtered maps of the CMB are also presented. There is no significant contamination from known foregrounds. The results show a discernible rise in the angular power spectrum from large ($l sim 40$) to small ($l sim 200$) angular scales.
187 - Nobuyuki Sakai 2008
We study the cosmic microwave background (CMB) anisotropy due to spherically symmetric nonlinear structures in flat universes with dust and a cosmological constant. By modeling a time-evolving spherical compensated void/lump by Lemaitre-Tolman-Bondi spacetimes, we numerically solve the null geodesic equations with the Einstein equations. We find that a nonlinear void redshifts the CMB photons that pass through it regardless of the distance to it. In contrast, a nonlinear lump blueshifts (or redshifts) the CMB photons if it is located near (or sufficiently far from) us. The present analysis comprehensively covers previous works based on a thin-shell approximation and a linear/second order perturbation method and the effects of shell thickness and full nonlinearity. Our results indicate that, if quasi-linear and large ($>100$Mpc) voids/lumps would exist, they could be observed as cold or hot spots with temperature variance $>10^{-5}$K in the CMB sky.
63 - R. Stompor , M. Abroe , P. Ade 2001
We discuss the cosmological implications of the new constraints on the power spectrum of the Cosmic Microwave Background Anisotropy derived from a new high resolution analysis of the MAXIMA-1 measurement (Lee et al. 2001). The power spectrum shows ex cess power at $ell sim 860$ over the average level of power at $411 leell le 785.$ This excess is statistically significant on the 95% confidence level. Such a feature is consistent with the presence of a third acoustic peak, which is a generic prediction of inflation-based models. The height and the position of the excess power match the predictions of a family of inflationary models with cosmological parameters that are fixed to fit the CMB data previously provided by BOOMERANG-LDB and MAXIMA-1 experiments (e.g., Jaffe et al.2001). Our results, therefore, lend support for inflationary models and more generally for the dominance of coherent perturbations in the structure formation of the Universe. At the same time, they seem to disfavor a large variety of the non-standard (but still inflation-based) models that have been proposed to improve the quality of fits to the CMB data and consistency with other cosmological observables. Within standard inflationary models, our results combined with the COBE-DMR data give best fit values and 95% confidence limits for the baryon density, $Omega_b h^2simeq 0.033{pm 0.013}$, and the total density, $Omega=0.9{+0.18atop -0.16}$. The primordial spectrum slope ($n_s$) and the optical depth to the last scattering surface ($tau_c$) are found to be degenerate and to obey the relation $n_s simeq 0.46 tau_c + (0.99 pm 0.14)$, for $tau_c le 0.5$ (all 95% c.l.).
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا