ترغب بنشر مسار تعليمي؟ اضغط هنا

The BeppoSAX View on the 2001 Reactivation of SGR 1900+14

54   0   0.0 ( 0 )
 نشر من قبل Marco Feroci
 تاريخ النشر 2001
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

After a couple of years of quiescence, the soft gamma repeater SGR 1900+14 suddenly reactivated on 18 April 2001, with the emission of a very intense, long and modulated flare, only second in intensity and duration to the 27 August 1998 giant flare. BeppoSAX caught the large flare with its Gamma Ray Burst Monitor and with one of the Wide Field Cameras. The Wide Field Cameras also detected X-ray bursting activity shortly before the giant flare. A target of opportunity observation was started only 8 hours after the large flare with the Narrow Field Instruments, composed of two 60-ks long pointings. These two observations show an X-ray afterglow of the persistent SGR 1900+14 source, decaying with time according to a power law of index -0.6.



قيم البحث

اقرأ أيضاً

After nearly two years of quiescence, the soft gamma-ray repeater SGR 1900+14 again became burst-active on April 18 2001, when it emitted a large flare, preceded by few weak and soft short bursts. After having detected the X and gamma prompt emission of the flare, BeppoSAX pointed its narrow field X-ray telescopes to the source in less than 8 hours. In this paper we present an analysis of the data from this and from a subsequent BeppoSAX observation, as well as from a set of RossiXTE observations. Our data show the detection of an X-ray afterglow from the source, most likely related to the large hard X-ray flare. In fact, the persistent flux from the source, in 2-10 keV, was initially found at a level $sim$5 times higher than the usual value. Assuming an underlying persistent (constant) emission, the decay of the excess flux can be reasonably well described by a t$^{-0.9}$ law. A temporal feature - a $sim$half a day long bump - is observed in the decay light curve approximately one day after the burst onset. This feature is unprecedented in SGR afterglows. We discuss our results in the context of previous observations of this source and derive implications for the physics of these objects.
We report on observations of SGR 1900+14 made with the Rossi X-ray Timing Explorer (RXTE) and BeppoSAX during the April 2001 burst activation of the source. Using these data, we measure the spindown torque on the star and confirm earlier findings tha t the torque and burst activity are not directly correlated. We compare the X-ray pulse profile to the gamma-ray profile during the April 18 intermediate flare and show that (i) their shapes are similar and (ii) the gamma-ray profile aligns closely in phase with the X-ray pulsations. The good phase alignment of the gamma-ray and X-ray profiles suggests that there was no rapid spindown following this flare of the magnitude inferred for the August 27 giant flare. We discuss how these observations further constrain magnetic field reconfiguration models for the large flares of SGRs.
Spectral and timing studies of Suzaku ToO observations of two SGRs, 1900+14 and 1806-20, are presented. The X-ray quiescent emission spectra were well fitted by a two blackbody function or a blackbody plus a power law model. The non-thermal hard comp onent discovered by INTEGRAL was detected by the PIN diodes and its spectrum was reproduced by the power law model reported by INTEGRAL. The XIS detected periodicity P = 5.1998+/-0.0002 s for SGR 1900+14 and P = 7.6022+/-0.0007 s for SGR 1806-20. The pulsed fraction was related to the burst activity for SGR 1900+14.
Magnetars are a special class of slowly rotating neutron stars with extremely strong magnetic fields -- at least an order of magnitude larger than those of the normal radio pulsars. The potential evolutionary links and differences between these two t ypes of objects are still unknown; recent studies, however, have provided circumstantial evidence connecting magnetars with very massive progenitor stars. Here we report the discovery of an infrared elliptical ring or shell surrounding the magnetar SGR 1900+14. The appearance and energetics of the ring are difficult to interpret within the framework of the progenitors stellar mass loss or the subsequent evolution of the supernova remnant. We suggest instead that a dust-free cavity was produced in the magnetar environment by the giant flare emitted by the source in August 1998. Considering the total energy released in the flare, the theoretical dust--destruction radius matches well with the observed dimensions of the ring. We conclude that SGR 1900+14 is unambiguously associated with a cluster of massive stars, thereby solidifying the link between magnetars and massive stars.
The soft-gamma repeater SGR 1900+14 became active again on June 1998 after a long period of quiescence; it remained at a low state of activity until August 1998, when it emitted a series of extraordinarily intense outbursts. We have observed the sour ce with RXTE twice, during the onset of each active episode. We confirm the pulsations at the 5.16 s period reported earlier (Hurley et al. 1998b, Hurley et al. 1998 e) from SGR 1900+14. Here we report the detection of a secular spindown of the pulse period at an average rate of 1.1*10^{-10} s/s. In view of the strong similarities between SGRs, we attribute the spindown of SGR 1900+14 to magnetic dipole radiation, possibly accelerated by a quiescent flux, as in the case of SGR 1806-20 (Kouveliotou et al. 1998a). This allows an estimate of the pulsar dipolar magnetic field, which is 2-8*10^{14} G. Our results confirm that SGRs are magnetars.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا