ﻻ يوجد ملخص باللغة العربية
Our recent CCD photometry (Lee et al. 1999) has shown, for the first time, that omega Cen has several distinct stellar populations, which is reminiscent of the Sagittarius dwarf galaxy. Here we present more detailed analysis of the data along with the population models. We confirm the presence of several distinct red-giant-branches (RGBs) with a red metal-rich sequence well separated from other bluer metal-poor ones. Our population models suggest the red clump associated with the most metal-rich RGB is about 4 Gyr younger than the dominant metal-poor component, indicating that omega Cen was enriched over this timescale. These features, taken together with this clusters other unusual characteristics, provide good evidence that omega Cen was once part of a more massive system that merged with the Milky Way, as the Sagittarius dwarf galaxy is in the process of doing now. Mergers probably were much more frequent in the early history of the Galaxy and omega Cen appears to be a relict of this era.
We present a detailed study of the radial distribution of the multiple populations identified in the Galactic globular cluster omega Cen. We used both space-based images (ACS/WFC and WFPC2) and ground-based images (FORS1@VLT and
[email protected] ESO telescop
We present a Bayesian method to identify multiple (chemodynamic) stellar populations in dwarf spheroidal galaxies (dSphs) using velocity, metallicity, and positional stellar data without the assumption of spherical symmetry. We apply this method to a
We perform N-body simulations of the dynamical evolution of a dwarf galaxy falling into the Milky Way galaxy in order to understand the formation scenario of the peculiar globular cluster $omega$ Centauri. We use self-consistent models of the bulge a
We have applied our empirical-PSF-based photometric techniques on a large number of calibration-related WFC3/UVIS UV-B exposures of the core of {omega} Cen, and found a well-defined split in the right part of the white-dwarf cooling sequence (WDCS).
Historically, photometry has been largely used to identify stellar populations (MPs) in Globular Clusters (GCs) by using diagrams that are based on colours and magnitudes that are mostly sensitive to stars with different metallicities or different ab