ﻻ يوجد ملخص باللغة العربية
A software package able to simulate imaging observations of galaxy clusters by the Chandra X-ray telescope is here presented. We start from high resolution N-body hydrodynamical simulations of galaxy clusters and assign to each gas particle a spectrum of emissivity, after assuming the MeKaL model. We then construct spatial images of the source differential flux which are used to create lists of incoming X-ray photons, preserving information on photon direction and energy. The photon lists are passed on to the Chandra simulator (MARX) to produce the final observation events. Background events are added to complete the simulation. Data analysis is currently in progress and simulated observations by other telescopes will become available in the future.
X-ray observations of galaxy clusters potentially provide powerful cosmological probes if systematics due to our incomplete knowledge of the intracluster medium (ICM) physics are understood and controlled. In this paper, we study the effects of galax
We explore the scaling relation between the flux of the Sunyaev-Zeldovich (SZ) effect and the total mass of galaxy clusters using already reduced Chandra X-ray data present in the ACCEPT (Archive of Chandra Cluster Entropy Profile Tables) catalogue.
We review recent progress in the description of the formation and evolution of galaxy clusters in a cosmological context by using numerical simulations. We focus our presentation on the comparison between simulated and observed X-ray properties, whil
We investigate a numerical model for AGN feedback where for the first time a relativistic particle population in AGN-inflated bubbles is followed within a full cosmological context. In our high-resolution simulations of galaxy cluster formation, we a
We assess the importance of AGN outflows with respect to the metal enrichment of the intracluster medium (ICM) in galaxy clusters. We use combined N-body and hydrodynamic simulations, along with a semi-numerical galaxy formation and evolution model.