ترغب بنشر مسار تعليمي؟ اضغط هنا

The Location of the Nucleus and the Morphology of Emission-Line Regions in NGC 1068

80   0   0.0 ( 0 )
 نشر من قبل Rodger I. Thompson
 تاريخ النشر 2001
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

This paper presents NICMOS images of the nucleus and emission line regions in NGC 1068. The location of the nucleus relative to the emission line features is established and the physics underlying the morphology is discussed.



قيم البحث

اقرأ أيضاً

We investigate the photoionised X-ray emission line regions (ELRs) within the Seyfert 2 galaxy NGC 1068, to determine if there are any characteristic changes between observations taken fourteen years apart. We compare XMM-Newton observations collecte d in 2000 and 2014, simultaneously fitting the reflection grating spectrometer (RGS) and EPIC-pn spectra of each epoch, for the first time, with the photoionisation model, PION, in SPEX. We find that four PION components are required to fit the majority of the emission lines in the spectra of NGC 1068, with $log xi=1-4$, $log N_H>26 m^{-2}$, and $v_{out}=-100$ to $-600 kms^{-1}$ for both epochs. Comparing the ionisation state of the components shows almost no difference between the two epochs, while there is an increase in the total column density. To estimate the locations of these plasma regions from the central black hole we compare distance methods, excluding the variability arguments as there is no spectral change between observations. Although the methods are unable to constrain the distances, the locations are consistent with the narrow line region, with the possibility of the higher ionised component being part of the broad line region, but we cannot conclude this for certain. In addition, we find evidence for emission from collisionally ionised plasma, while previous analysis had suggested that collisional plasma emission was unlikely. However, although PION is unable to account for the FeXVII emission lines at 15 and 17 AA, we do not rule out that photoexcitation is a valid processes to produce these lines too. NGC 1068 has not changed, both in terms of the observed spectra or from our modelling, within the 14 year time period between observations. This suggests that the ELRs are fairly static relative to the 14 year time frame between observations, or there is no dramatic change in the black hole variability.
We present the results of our ALMA Cycle 2 high angular resolution (0.1-0.2 arcsec) observations of the nuclear region of the nearby well-studied type-2 active galactic nucleus (AGN), NGC 1068, at HCN J=3-2 and HCO+ J=3-2 emission lines. For the firs t time, due to a higher angular resolution than previous studies, we clearly detected dense molecular gas emission at the putative AGN location, identified as a ~1.1 mm (~266 GHz) continuum emission peak, by separating this emission from brighter emission located at 0.5-2.0 arcsec on the eastern and western sides of the AGN. The estimated intrinsic molecular emission size and dense molecular mass, which are thought to be associated with the putative dusty molecular torus around an AGN, were ~10 pc and ~several x 10^5 Msun, respectively. HCN-to-HCO+ J=3-2 flux ratios substantially higher than unity were found throughout the nuclear region of NGC 1068. The continuum emission displayed an elongated morphology along the direction of the radio jet located at the northern side of the AGN, as well as a weak spatially resolved component at ~2.0 arcsec on the southwestern side of the AGN. The latter component most likely originated from star formation, with the estimated luminosity more than one order of magnitude lower than the luminosity of the central AGN. No vibrationally excited (v2=1f) J=3-2 emission lines were detected for HCN and HCO+ across the field of view.
We compute the non-thermal emissions produced by relativistic particles accelerated by the AGN-driven shocks in NGC 1068, and we compare the model predictions with the observed gamma-ray and radio spectra . The former is contributed by pion decay, in verse Compton scattering, and bremsstrahlung, while the latter is produced by synchrotron radiation. We derive the gamma-ray and radio emissions by assuming the standard acceleration theory, and we discuss how our results compare with those corresponding to other commonly assumed sources of gamma-ray and radio emissions, like Supernova remnants (SNR) or AGN jets. We find that the AGN-driven shocks observed in the circumnuclear molecular disk of such a galaxy provide a contribution to the gamma-ray emission comparable to that provided by the starburst activity when standard particle acceleration efficiencies are assumed, while they can yield the whole gamma-ray emission only when the parameters describing the acceleration efficiency and the proton coupling with the molecular gas are tuned to values larger than those assumed in standard, SNR-driven shocks. We discuss the range of acceleration efficiencies (for protons and electrons) and of proton calorimetric fractions required to account for the observed gamma-ray emission in the AGN outflow model. We further compare the neutrino flux expected in our model with constraints from current experiments, and we provide predictions for the detections by the upcoming KM3NeT neutrino telescope. This analysis strongly motivates observations of NGC 1068 at >TeV energies with current and future Cherenkov telescopes in order to gain insight into the nature of the gamma-rays source.
We present a detailed, photoionization modeling analysis of XMM-Newton/Reflection Grating Spectrometer observations of the Seyfert 2 galaxy NGC 1068. The spectrum, previously analyzed by Kinkhabwala et al. (2002), reveals a myriad of soft-Xray emissi on lines, including those from H- and He-like carbon, nitrogen, oxygen, and neon, and M- and L-shell iron. As noted in the earlier analysis, based on the narrowness of the radiative recombination continua, the electron temperatures in the emission-line gas are consistent with photoionization, rather than collisional ionization. The strengths of the carbon and nitrogen emission lines, relative to those of oxygen, suggest unusual elemental abundances, which we attribute to star-formation history of the host galaxy. Overall, the emission-lines are blue-shifted with respect to systemic, with radial velocities ~ 160 km/s, similar to that of [O III] 5007, and thus consistent with the kinematics and orientation of the optical emission-line gas and, hence, likely part of an AGN-driven outflow. We were able to achieve an acceptable fit to most of the strong emission-lines with a two-component photoionization model, generated with Cloudy. The two components have ionization parameters and column densities of logU = -0.05 and 1.22, and logN(H) = 20.85 and 21.2, and covering factors of 0.35 and 0.84, respectively. The total mass of the X-ray gas is roughly of an order of magnitude greater than the mass of ionized gas determined from optical and near-IR spectroscopy, which indicates that it may be the dominant component of the narrow line region. Furthermore, we suggest that the medium which produces the scattered/polarized optical emission in NGC~1068 possesses similar physical characteristics to those of the more highly-ionized of the X-ray model components.
The detection of polarized continuum and line emission from the nucleus of NGC 4258 by Wilkes et al. (1995) provides an intriguing application of the unified model of Seyfert nuclei to a galaxy in which there is known to be an edge-on, rotating disk of molecular gas surrounding the nucleus. Unlike most Seyfert nuclei, however, NGC 4258 has strongly polarized narrow emission lines. To further investigate the origin of the polarized emission, we have obtained spectropolarimetric observations of the NGC 4258 nucleus at the Keck-II telescope. The narrow-line polarizations range from 1.0% for [S II] 6716 to 13.9% for the [O II] 7319,7331 blend, and the position angle of polarization is oriented nearly parallel to the projected plane of the masing disk. A correlation between critical density and degree of polarization is detected for the forbidden lines, indicating that the polarized emission arises from relatively dense (n_e > 10^4 cm^-3) gas. An archival Hubble Space Telescope narrow-band [O III] image shows that the narrow-line region has a compact, nearly unresolved core, implying a FWHM size of <2.5 pc. We discuss the possibility that the polarized emission might arise from the accretion disk itself and become polarized by scattering within the disk atmosphere. A more likely scenario is an obscuring torus or strongly warped disk surrounding the inner portion of a narrow-line region which is strongly stratified in density. The compact size of the narrow-line region implies that the obscuring structure must be smaller than ~2.5 pc in diameter.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا