ترغب بنشر مسار تعليمي؟ اضغط هنا

Ionization and Velocity Structure in the Supernova Remnant E0102-72

273   0   0.0 ( 0 )
 نشر من قبل Kathryn Flanagan
 تاريخ النشر 2001
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The High Energy Transmission Grating (HETG) Spectrometer aboard the Chandra X-Ray Observatory was used to observe E0102-72, a ~1000 year old, oxygen rich supernova in the Small Magellanic Cloud. The HETG disperses the image of the remnant into a spectrum of images in the light of individual X-ray emission lines. Doppler shifts in the strongest lines of oxygen and neon reveal bulk motions of up to 2000 km/sec with a complex morphology. Comparison of progressive ionization stages of magnesium, neon, oxygen and silicon provide new insights into the mechanism of the `reverse shock that heats the stellar ejecta.



قيم البحث

اقرأ أيضاً

The young oxygen-rich supernova remnant E0102-72 in the Small Magellanic Cloud has been observed with the High Energy Transmission Grating Spectrometer of Chandra. The high resolution X-ray spectrum reveals images of the remnant in the light of indiv idual emission lines of oxygen, neon, magnesium and silicon. The peak emission region for hydrogen-like ions lies at larger radial distance from the SNR center than the corresponding helium-like ions, suggesting passage of the ejecta through the reverse shock. We examine models which test this interpretation, and we discuss the implications.
187 - J. Rho , W. T. Reach , A. Tappe 2009
We present Spitzer IRS and IRAC observations of the young supernova remnant E0102 (SNR 1E0102.2-7219) in the Small Magellanic Cloud. The infrared spectra show strong ejecta lines of Ne and O, with the [Ne II] line at 12.8 microns having a large veloc ity dispersion of 2,000-4,500 km/s indicative of fast-moving ejecta. Unlike the young Galactic SNR Cas A, E0102 lacks emission from Ar and Fe. Diagnostics of the observed [Ne III] line pairs imply that [Ne III] emitting ejecta have a low temperature of 650 K, while [Ne V] line pairs imply that the infrared [Ne V] emitting ejecta have a high density of ~10^4/cm3. We have calculated radiative shock models for various velocity ranges including the effects of photoionization. The shock model indicates that the [Ne V] lines come mainly from the cooling zone, which is hot and dense, whereas [Ne II] and [Ne III] come mainly from the photoinization zone, which has a low temperature of 400-1000 K. We estimate an infrared emitting Ne ejecta mass of 0.04 Msun from the infrared observations, and discuss implications for the progenitor mass. The spectra also have a dust continuum feature peaking at 18 microns that coincides spatially with the ejecta, providing evidence that dust formed in the expanding ejecta. The 18-micron-peak dust feature is fitted by a mixture of MgSiO3 and Si dust grains, while the rest of the continuum requires either carbon or Al2O3 grains. We measure the total dust mass formed within the ejecta of E0102 to be ~0.014 Msun. The dust mass in E0102 is thus a factor of a few smaller than that in Cas A. The composition of the dust is also different, showing relatively less silicate and likely no Fe-bearing dust, as is suggested by the absence of Fe-emitting ejecta.
164 - Toshiki Sato 2016
We present the first direct ejecta velocity measurements of Tychos supernova remnant (SNR). Chandras high angular resolution images reveal a patchy structure of radial velocities in the ejecta that can be separated into distinct redshifted, blueshift ed, and low velocity ejecta clumps or blobs. The typical velocities of the redshifted and blueshifted blobs are <~ 7,800 km/s and <~ 5,000 km/s, respectively. The highest velocity blobs are located near the center, while the low velocity ones appear near the edge as expected for a generally spherical expansion. Systematic uncertainty on the velocity measurements from gain calibration was assessed by carrying out joint fits of individual blobs with both the ACIS-I and ACIS-S detectors. We determine the three-dimensional kinematics of the Si- and Fe-rich clumps in the southeastern quadrant and show that these knots form a distinct, compact, and kinematically-connected structure, possibly even a chain of knots strung along the remnants edge. By examining the viewing geometries we conclude that the knots in the southeastern region are unlikely to be responsible for the high velocity Ca II absorption features seen in the light echo spectrum of SN 1572, the originating event for Tychos SNR.
181 - Adam M. Ritchey 2020
We present an analysis of moderately high resolution optical spectra obtained for the sight line to CD-23 13777, an O9 supergiant that probes high velocity interstellar gas associated with the supernova remnant W28. Absorption components at both high positive and high negative velocity are seen in the interstellar Na I D and Ca II H and K lines toward CD-23 13777. The high velocity components exhibit low Na I/Ca II ratios, suggesting efficient grain destruction by shock sputtering. High column densities of CH+, and high CH+/CH ratios, for the components seen at lower velocity may be indicative of enhanced turbulence in the clouds interacting with W28. The highest positive and negative velocities of the components seen in Na I and Ca II absorption toward CD-23 13777 imply that the velocity of the blast wave associated with W28 is at least 150 km/s, a value that is significantly higher than most previous estimates. The line of sight to CD-23 13777 passes very close to a well-known site of interaction between the SNR and a molecular cloud to the northeast. The northeast molecular cloud exhibits broad molecular line emission, OH maser emission from numerous locations, and bright extended GeV and TeV gamma-ray emission. The sight line to CD-23 13777 is thus a unique and valuable probe of the interaction between W28 and dense molecular gas in its environs. Future observations at UV and visible wavelengths will help to better constrain the abundances, kinematics, and physical conditions in the shocked and quiescent gas along this line of sight.
The structure, elemental abundances, physical conditions of the LMC supernova remnant (SNR) 0540-69.3 and its surroundings were investigated using [O III] imaging and spectroscopy. Several new spectral lines are identified, both in central filaments and in interstellar clouds shocked by the supernova blast wave. The central lines are redshifted by $440pm80$ km s$^{-1}$ with respect to the LMC, and the [O III] emission displays a symmetry axis of ring-like structures which could indicate that the pulsar shares the same general redshift as the central supernova ejecta. [O II], [S II], [Ar III] and H$beta$ have more compact structures than [O III], and possibly [Ne III]. The average [O III] temperature is $23,500 pm 1,800$ K, and the electron density from [S II] is typically $10^3$ cm$^{-3}$. By mass, the relative elemental abundances of the central shocked ejecta are ${rm O:Ne:S:Ar} approx 1:0.07:0.10:0.02$, consistent with explosion models of $13-20$ solar mass progenitors, and similar to that of SN 1987A, as is also the mixing of hydrogen and helium into the center. [O III] is also seen in freely coasting ejecta outside the pulsar-wind nebula out to well above $2,000$ km s$^{-1}$. From this a pulsar age of $approx 1,200$ years is estimated. Four filaments of shocked interstellar medium with a wide range in degree of ionization of iron are identified. One was observed in X-rays, and another has a redshift of $85pm30$ km~s$^{-1}$ relative to LMC. From this the electron density of the [O III]-emitting gas is estimated to be $10^3$ cm$^{-3}$. The line of the most highly ionized ion, [Fe XIV] $lambda$5303, likely comes from an evaporation zone in connection with the radiatively cooled gas emitting, e.g., [O III].
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا