ترغب بنشر مسار تعليمي؟ اضغط هنا

Extreme synchrotron BL Lac objects

103   0   0.0 ( 0 )
 نشر من قبل Luigi Costamante
 تاريخ النشر 2001
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We performed an observational program with the X-ray satellite BeppoSAX to study objects with extreme synchrotron peak frequencies (nu_peak > 1 keV). Of the seven sources observed, four showed peak frequencies in the range 1-5 keV, while one (1ES 1426+428) displayed a flat power law spectrum (alpha= 0.92), locating its synchrotron peak at or above 100 keV. This is the third source of this type ever found, after Mkn 501 and 1ES 2344+514. Our data confirm the large nu_peak variability of this class of sources, compared with lower peaked objects. The high synchrotron peak energies, flagging the presence of high energy electrons, make the extreme BL Lacs also good candidates for TeV emission, and therefore good probes for the IR background.



قيم البحث

اقرأ أيضاً

We calculate the spectral energy distribution (SED) of electromagnetic radiation and the spectrum of high energy neutrinos from BL Lac objects in the context of the Synchrotron Proton Blazar Model. In this model, the high energy hump of the SED is du e to accelerated protons, while most of the low energy hump is due to synchrotron radiation by co-accelerated electrons. To accelerate protons to sufficiently high energies to produce the high energy hump, rather high magnetic fields are required. Assuming reasonable emission region volumes and Doppler factors, we then find that in low-frequency peaked BL Lacs (LBLs), which have higher luminosities than high-frequency peaked BL Lacs (HBLs), there is a significant contribution to the high frequency hump of the SED from pion photoproduction and subsequent cascading, including synchrotron radiation by muons. In contrast, in HBLs we find that the high frequency hump of the SED is dominated by proton synchrotron radiation. We are able to model the SED of typical LBLs and HBLs, and to model the famous 1997 flare of Markarian 501. We also calculate the expected neutrino output of typical BL Lac objects, and estimate the diffuse neutrino intensity due to all BL Lacs. Because pion photoproduction is inefficient in HBLs, as protons lose energy predominantly by synchrotron radiation, the contribution of LBLs dominates the diffuse neutrino intensity. We suggest that nearby LBLs may well be observable with future high-sensitivity TeV gamma-ray telescopes.
BL Lacertae objects are extreme extragalactic sources characterized by the emission of strong and rapidly variable nonthermal radiation over the entire electromagnetic spectrum. Synchrotron emission followed by inverse Compton scattering in a relativ istic beaming scenario is generally thought to be the mechanism powering these objects. ...
The next generation of TeV detectors is expected to have a significantly enhanced performance. It is therefore constructive to search for new TeV candidates for observation. This paper focuses on TeV candidates among the high-synchrotron-peaked BL La certae objects (HBLs) reported in the fourth catalog of active galactic nuclei detected by the Fermis Large Area Telescope, i.e., 4LAC. By cross-matching the Fermi data with radio and optical observations, we collected the multiwavelength features of 180 HBLs with known redshift. The data set contains 39 confirmed TeV sources and 141 objects whose TeV detection has not yet been reported (either not yet observed, or observed but not detected). Using two kinds of supervised machine-learning (SML) methods, we searched for new possible TeV candidates (PTCs) among the nondetected objects by assessing the similarity of their multi-wavelength properties to existing TeV-detected objects. The classification results of the two SML classifiers were combined and the 24 highest-confidence PTCs were proposed as the best candidates. We calculate, here, the 12 year averaged Fermi spectra of these PTCs and estimate their detectability by extrapolating the Fermi spectrum and including the extragalactic background light attenuation. Four candidates are suggested to have a high likelihood of being detected by the Large High Altitude Air Shower Observatory and 24 are candidates for the Cerenkov Telescope Array observations.
Extreme high synchrotron peaked blazars (EHBLs) are amongst the most powerful accelerators found in nature. Usually the synchrotron peak frequency of an EHBL is above $10^{17},$Hz, i.e., lies in the range of medium to hard X-rays making them ideal so urces to study particle acceleration and radiative processes. EHBL objects are commonly observed at energies beyond several TeV, making them also powerful probes of gamma-ray absorption in the intergalactic medium. During the last decade, several attempts have been made to increase the number of EHBL detected at TeV energies and probe their spectral characteristics. Here we report new detections of EHBLs in the TeV energy regime, each at a redshift of less than 0.2, by the High Energy Stereoscopic System (H.E.S.S.). Also, we report on X-ray observations of these EHBLs candidates with Swift XRT. In conjunction with the very high energy observations, this allows us to probe the radiation mechanisms and the underlying particle acceleration processes.
Only BL Lac objects have been detected as extragalactic sources of very high energy (E > 300 GeV) gamma rays. Using the Whipple Observatory Gamma-ray Telescope, we have attempted to detect more BL Lacs using three approaches. First, we have conducted surveys of nearby BL Lacs, which led to the detections of Mrk 501 and 1ES 2344+514. Second, we have observed X-ray bright BL Lacs when the RXTE All-Sky Monitor identifies high state X-ray emission in an object, in order to efficiently detect extended high emission states. Third, we have conducted rapid observations of several BL Lacs and QSOs located close together in the sky to search for very high flux, short time-scale flare states such as have been seen from Mrk 421. We will present the results of a survey using the third observational technique.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا