ﻻ يوجد ملخص باللغة العربية
The first part of this paper deals with the impact of nonsolar and - for late-type, dwarf, and high redshift galaxies - generally subsolar abundances on the interpretation of observational data for starburst galaxies. It points out the differences in colors, luminosities, emission lines, etc. obtained from a model using low metallicity input physics for a starburst on top of the stellar population of a galaxy as compared to an otherwise identical model using solar metallicity input physics only. The second part deals with the chemical evolution during a starburst and contrasts model predictions with observational clues.
We propose an evolutionary scenario by successive bursts of star formation to reproduce the chemical properties of massive nearby Starburst Nucleus Galaxies (SBNGs). The N/O abundance ratios in SBNGs are 0.2 dex higher than in normal HII regions obse
Recent VLT SINFONI observations of the close environments (~30pc) of nearby AGNs have shown that thick gas tori and starbursts with ages between 10 and 150Myr are frequently found. By applying these observations to a previously established analytical
We study the effects of the integrated galactic initial mass function (IGIMF) and dust evolution on the abundance patterns of high redshift starburst galaxies. In our chemical models, the rapid collapse of gas clouds triggers an intense and rapid sta
We studied the radio properties of very young massive regions of star formation in HII galaxies, with the aim of detecting episodes of recent star formation in an early phase of evolution where the first supernovae start to appear. The observed radio
Blue Compact Dwarf and Dwarf Irregular galaxies are generally believed to be unevolved objects, due to their blue colors, compact appearance and large gas fractions. Many of these objects show an ongoing intense burst of star formation or have experi