ترغب بنشر مسار تعليمي؟ اضغط هنا

The Void Phenomenon

65   0   0.0 ( 0 )
 نشر من قبل P. J. E. Peebles
 تاريخ النشر 2001
  مجال البحث فيزياء
والبحث باللغة English
 تأليف P. J. E. Peebles




اسأل ChatGPT حول البحث

Advances in theoretical ideas on how galaxies formed have not been strongly influenced by the advances in observations of what might be in the voids between the concentrations of ordinary optically selected galaxies. The theory and observations are maturing, and the search for a reconciliation offers a promising opportunity to improve our understanding of cosmic evolution. I comment on the development of this situation and present an update of a nearest neighbor measure of the void phenomenon that may be of use in evaluating theories of galaxy formation.



قيم البحث

اقرأ أيضاً

The Void Galaxy Survey (VGS) is a multi-wavelength program to study $sim$60 void galaxies. Each has been selected from the deepest interior regions of identified voids in the SDSS redshift survey on the basis of a unique geometric technique, with no a prior selection of intrinsic properties of the void galaxies. The project intends to study in detail the gas content, star formation history and stellar content, as well as kinematics and dynamics of void galaxies and their companions in a broad sample of void environments. It involves the HI imaging of the gas distribution in each of the VGS galaxies. Amongst its most tantalizing findings is the possible evidence for cold gas accretion in some of the most interesting objects, amongst which are a polar ring galaxy and a filamentary configuration of void galaxies. Here we shortly describe the scope of the VGS and the results of the full analysis of the pilot sample of 15 void galaxies.
{We study biasing as a physical phenomenon by analysing geometrical and clustering properties of density fields of matter and galaxies.} {Our goal is to determine the bias function using a combination of geometrical and power spectrum analysis of sim ulated and real data.} {We apply an algorithm based on local densities of particles, $delta$, to form simulated biased models using particles with $delta ge delta_0$. We calculate the bias function of model samples as functions of the particle density limit $delta_0$. We compare the biased models with Sloan Digital Sky Survey (SDSS) luminosity limited samples of galaxies using the extended percolation method. We find density limits $delta_0$ of biased models, which correspond to luminosity limited SDSS samples.} {Power spectra of biased model samples allow to estimate the bias function $b(>L)$ of galaxies of luminosity $L$. We find the estimated bias parameter of $L_ast$ galaxies, $b_ast =1.85 pm 0.15$. } {The absence of galaxy formation in low-density regions of the Universe is the dominant factor of the biasing phenomenon. Second largest effect is the dependence of the bias function on the luminosity of galaxies. Variations in gravitational and physical processes during the formation and evolution of galaxies have the smallest influence to the bias function. }
We analyze photometry from deep B-band images of 59 void galaxies in the Void Galaxy Survey (VGS), together with their near-infrared 3.6$mu$m and 4.5$mu$m Spitzer photometry. The VGS galaxies constitute a sample of void galaxies that were selected by a geometric-topological procedure from the SDSS DR7 data release, and which populate the deep interior of voids. Our void galaxies span a range of absolute B-magnitude from $rm{M_B=-15.5}$ to $rm{M_B=-20}$, while at the 3.6$mu$m band their magnitudes range from $rm{M_{3.6}=-18}$ to $rm{M_{3.6}=-24}$. Their B-[3.6] colour and structural parameters indicate these are star forming galaxies. A good reflection of the old stellar population, the near-infrared band photometry also provide a robust estimate of the stellar mass, which for the VGS galaxies we confirm to be smaller than $3 times 10^{10}$ M$_odot$. In terms of the structural parameters and morphology, our findings align with other studies in that our VGS galaxy sample consists mostly of small late-type galaxies. Most of them are similar to Sd-Sm galaxies, although a few are irregularly shaped galaxies. The sample even includes two early-type galaxies, one of which is an AGN. Their S{e}rsic indices are nearly all smaller than $n=2$ in both bands and they also have small half-light radii. In all, we conclude that the principal impact of the void environment on the galaxies populating them mostly concerns their low stellar mass and small size.
Cosmic voids are becoming key players in testing the physics of our Universe. Here we concentrate on the abundances and the dynamics of voids as these are among the best candidates to provide information on cosmological parameters. Cai, Padilla & Li (2014) use the abundance of voids to tell apart Hu & Sawicki $f(R)$ models from General Relativity. An interesting result is that even though, as expected, voids in the dark matter field are emptier in $f(R)$ gravity due to the fifth force expelling away from the void centres, this result is reversed when haloes are used to find voids. The abundance of voids in this case becomes even lower in $f(R)$ compared to GR for large voids. Still, the differences are significant and this provides a way to tell apart these models. The velocity field differences between $f(R)$ and GR, on the other hand, are the same for halo voids and for dark matter voids. Paz et al. (2013), concentrate on the velocity profiles around voids. First they show the necessity of four parameters to describe the density profiles around voids given two distinct void populations, voids-in-voids and voids-in-clouds. This profile is used to predict peculiar velocities around voids, and the combination of the latter with void density profiles allows the construction of model void-galaxy cross-correlation functions with redshift space distortions. When these models are tuned to fit the measured correlation functions for voids and galaxies in the Sloan Digital Sky Survey, small voids are found to be of the void-in-cloud type, whereas larger ones are consistent with being void-in-void. This is a novel result that is obtained directly from redshift space data around voids. These profiles can be used to remove systematics on void-galaxy Alcock-Pacinsky tests coming from redshift-space distortions.
Optical and near-IR observations of the halos of disk galaxies and blue compact galaxies have revealed a very red spectral energy distribution, which cannot easily be reconciled with a normal, metal-poor stellar population like that in the stellar ha lo of the Milky Way. Here, spectral evolutionary models are used to explore the consequences of these observations. We demonstrate that a stellar population of low to intermediate metallicity, but with an extremely bottom-heavy initial mass function, can explain the red halos around both types of objects. Other previously suggested explanations, like nebular emission or very metal-rich stars, are shown to fail in this respect. This indicates that, if the reported halo colours are correct, halo populations dominated by low-mass stars may be a phenomenon common to galaxies of very different Hubble types. Potential tests of this hypothesis are discussed, along with its implications for the baryonic dark matter content of galaxies.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا