ﻻ يوجد ملخص باللغة العربية
[Abridged] We analyze the exchange of dark matter between halos, subhalos, and their environments in a high-resolution cosmological N-body simulation of a Lambda CDM cosmology. At each analyzed redshift z we divide the dark matter particles into 4 components: (i) isolated galactic halos, (ii) subhalos, (iii) the diffuse medium of group and cluster halos, and (iv) the background outside of virialized halos. We follow the time evolution of the mass distribution and flows between these components and provide fitting functions for the exchange rates. We use our derived exchange rates to gauge the importance of metal redistribution in the universe due solely to gravity-induced interactions. The diffuse metallicity in clusters is predicted to be ~40% that in isolated galaxies (~55% of groups) at z=0, and should be lower only slightly by z=1, consistent with observations. The metallicity of the diffuse media in poor groups is expected to be lower by a factor of 5 by z~2, in agreement with the observed metallicity of damped Ly$alpha$ systems. The metallicity of the background IGM is predicted to be (1-3)x10^{-4} that of z=0 clusters, also consistent with observations. The agreement of predicted and observed trends indicates that gravitational interaction alone may play an important role in metal enrichment of the intra-cluster and intergalactic media.
We investigate the effect of dark energy on the density profiles of dark matter haloes with a suite of cosmological N-body simulations and use our results to test analytic models. We consider constant equation of state models, and allow both w>-1 and
A promising candidate for cold dark matter is primordial black holes (PBH) formed from strong primordial quantum fluctuations. A necessary condition for the formation of PBHs is a change of sign in the tilt governing the anomalous scale invariance of
We propose a new explanation for the origin of angular momentum in galaxies and their dark halos, in which the halos obtain their spin through the cumulative acquisition of angular momentum from satellite accretion. In our model, the build-up of angu
This papers explores the self similar solutions of the Vlasov-Poisson system and their relation to the gravitational collapse of dynamically cold systems. Analytic solutions are derived for power law potential in one dimension, and extensions of thes
We present a test to quantify how well some approximate methods, designed to reproduce the mildly non-linear evolution of perturbations, are able to reproduce the clustering of DM halos once the grouping of particles into halos is defined and kept fi