ترغب بنشر مسار تعليمي؟ اضغط هنا

Recent results by the MOA group on gravitational microlensing

214   0   0.0 ( 0 )
 نشر من قبل Nicholas Rattenbury
 تاريخ النشر 2000
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Recent work by the MOA gravitational microlensing group is briefly described, including (i) the current observing strategy, (ii) use of a high-speed parallel computer for analysis of results by inverse ray shooting, (iii) analysis of the light curve of event OGLE-2000-BUL12 in terms of extra-solar planets, and (iv) the MOA alert system using difference imaging.



قيم البحث

اقرأ أيضاً

We review recent gravitational microlensing results from the EROS, MACHO, and OGLE collaborations, and present some details of the very latest MACHO results toward the Galactic Bulge. The MACHO collaboration has now discovered in excess of 40 microle nsing events toward the Galactic Bulge during the 1993 observing season. A preliminary analysis of this data suggests a much higher microlensing optical depth than predicted by standard galactic models suggesting that these models will have to be revised. This may have important implications for the structure of the Galaxy and its dark halo. Also shown are MACHO data of the first microlensing event ever detected substantially before peak amplification, the first detection of parallax effects in a microlensing event, and the first caustic crossing to be resolved in a microlensing event.
A search for extra-solar planets was carried out in three gravitational microlensing events of high magnification, MACHO 98-BLG-35, MACHO 99-LMC-2, and OGLE 00-BUL-12. Photometry was derived from observational images by the MOA and OGLE groups using an image subtraction technique. For MACHO 98-BLG-35, additional photometry derived from the MPS and PLANET groups was included. Planetary modeling of the three events was carried out in a super-cluster computing environment. The estimated probability for explaining the data on MACHO 98-BLG-35 without a planet is <1%. The best planetary model has a planet of mass ~(0.4-1.5) X 10^-5 M_Earth at a projected radius of either ~1.5 or ~2.3 AU. We show how multi-planet models can be applied to the data. We calculated exclusion regions for the three events and found that Jupiter-mass planets can be excluded with projected radii from as wide as about 30 AU to as close as around 0.5 AU for MACHO 98-BLG-35 and OGLE 00-BUL-12. For MACHO 99-LMC-2, the exclusion region extends out to around 10 AU and constitutes the first limit placed on a planetary companion to an extragalactic star. We derive a particularly high peak magnification of ~160 for OGLE 00-BUL-12. We discuss the detectability of planets with masses as low as Mercury in this and similar events.
The speed of gravitational waves provides us a new tool to test alternative theories of gravity. The constraint on the speed of gravitational waves from GW170817 and GRB170817A is used to test some classes of Horndeski theory. In particular, we consi der the coupling of a scalar field to Einstein tensor and the coupling of the Gauss-Bonnet term to a scalar field. The coupling strength of the Gauss-Bonnet coupling is constrained to be in the order of $10^{-15}$. In the Horndeski theory we show that in order for this theory to satisfy the stringent constraint on the speed of GWs the mass scale $M$ introduced in the non-minimally derivative coupling is constrained to be in the range $10^{15}text{GeV}gg M gtrsim 2times 10^{-35}$GeV taking also under consideration the early times upper bound for the mass scale $M$. The large mass ranges require no fine-tuning because the effect of non-minimally derivative coupling is negligible at late times.
210 - K.-H. Hwang , C. Han , I. A. Bond 2010
We report the result of the analysis of the light curve of the microlensing event MOA-2009-BLG-016. The light curve is characterized by a short-duration anomaly near the peak and an overall asymmetry. We find that the peak anomaly is due to a binary companion to the primary lens and the asymmetry of the light curve is explained by the parallax effect caused by the acceleration of the observer over the course of the event due to the orbital motion of the Earth around the Sun. In addition, we detect evidence for the effect of the finite size of the source near the peak of the event, which allows us to measure the angular Einstein radius of the lens system. The Einstein radius combined with the microlens parallax allows us to determine the total mass of the lens and the distance to the lens. We identify three distinct classes of degenerate solutions for the binary lens parameters, where two are manifestations of the previously identified degeneracies of close/wide binaries and positive/negative impact parameters, while the third class is caused by the symmetric cycloid shape of the caustic. We find that, for the best-fit solution, the estimated mass of the lower-mass component of the binary is (0.04 +- 0.01) M_sun, implying a brown-dwarf companion. However, there exists a solution that is worse only by Deltachi^2 ~ 3 for which the mass of the secondary is above the hydrogen-burning limit. Unfortunately, resolving these two degenerate solutions will be difficult as the relative lens-source proper motions for both are similar and small (~ 1 mas/yr) and thus the lens will remain blended with the source for the next several decades.
A planetary microlensing signal is generally characterized by a short-term perturbation to the standard single lensing light curve. A subset of binary-source events can produce perturbations that mimic planetary signals, thereby introducing an ambigu ity between the planetary and binary-source interpretations. In this paper, we present analysis of the microlensing event MOA-2012-BLG-486, for which the light curve exhibits a short-lived perturbation. Routine modeling not considering data taken in different passbands yields a best-fit planetary model that is slightly preferred over the best-fit binary-source model. However, when allowed for a change in the color during the perturbation, we find that the binary-source model yields a significantly better fit and thus the degeneracy is clearly resolved. This event not only signifies the importance of considering various interpretations of short-term anomalies, but also demonstrates the importance of multi-band data for checking the possibility of false-positive planetary signals.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا