ترغب بنشر مسار تعليمي؟ اضغط هنا

The ORFEUS II Echelle Spectrometer: Instrument description, performance and data reduction

102   0   0.0 ( 0 )
 نشر من قبل Juergen Barnstedt
 تاريخ النشر 2000
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

During the second flight of the ORFEUS-SPAS mission in November/December 1996, the Echelle spectrometer was used extensively by the Principal and Guest Investigator teams as one of the two focal plane instruments of the ORFEUS telescope. We present the in-flight performance and the principles of the data reduction for this instrument. The wavelength range is 90 nm to 140 nm, the spectral resolution is significantly better than lambda/(Delta lambda) = 10000, where Delta lambda is measured as FWHM of the instrumental profile. The effective area peaks at 1.3 cm^2 near 110 nm. The background is dominated by straylight from the Echelle grating and is about 15% in an extracted spectrum for spectra with a rather flat continuum. The internal accuracy of the wavelength calibration is better than +/- 0.005 nm.



قيم البحث

اقرأ أيضاً

59 - H. Bluhm 1999
In ORFEUS II spectra of the sdO star BD +39 3226 interstellar hydrogen and deuterium is detected. From Ly alpha profile fitting and a curve of growth analysis of the Lyman series of H I and D I we derive the column densities N(H)=1.20(+0.28/-0.22)*10 ^20 cm^(-2) and N(D)=1.45(+0.50/-0.38)*10^(15) cm^(-2). From the analysis of metal absorption lines in ORFEUS and IUE spectra we obtain column densities for 11 elements. In addition, we examine absorption lines of H_2 for rotational excitation states up to J=7. We find an H_2 ortho-to-para ratio of 2.5, the fractional abundance of molecular hydrogen has a low value of log f=-4.08 for a total amount of N(H_2)=4.8(+2.0/-1.6)*10^15 cm^(-2). The column densities of the excitation states reveal a moderate Boltzmann excitation temperature of 130 K and an equivalent excitation temperature for the excited upper states due to UV pumping of <1800 K.
The measurement of the diffuse $21$-cm radiation from the hyperfine transition of neutral hydrogen (HI signal) in different redshifts is an important tool for modern cosmology. However, detecting this faint signal with non-cryogenic receivers in sing le-dish telescopes is a challenging task. The BINGO (Baryon Acoustic Oscillations from Integrated Neutral Gas Observations) radio telescope is an instrument designed to detect baryonic acoustic oscillations (BAO) in the cosmological HI signal, in the redshift interval $0.127 le z le 0.449$. This paper describes the BINGO radio telescope, including the current status of the optics, receiver, observational strategy, calibration and the site. BINGO has been carefully designed to minimize systematics, being a transit instrument with no moving dishes and 28 horns operating in the frequency range $980 le u le 1260$ MHz. Comprehensive laboratory tests were conducted for many of the BINGO subsystems and the prototypes of the receiver chain, horn, polarizer, magic tees and transitions have been successfully tested between 2018-2020. The survey was designed to cover $sim 13%$ of the sky, with the primary mirror pointing at declination $delta=-15^{circ}$. The telescope will see an instantaneous declination strip of $14.75^{circ}$. The results of the prototype tests closely meet those obtained during the modelling process, suggesting BINGO will perform according to our expectations. After one year of observations with a 60% duty cycle, BINGO should achieve an expected sensitivity of $102 mu K$ for 28 horns and 30 redshift bins, considering one polarization and be able to measure the HI power spectrum in a competitive time frame.
We present in this paper the general formalism and data processing steps used in the MATISSE data reduction software, as it has been developed by the MATISSE consortium. The MATISSE instrument is the mid-infrared new generation interferometric instru ment of the Very Large Telescope Interferometer (VLTI). It is a 2-in-1 instrument with 2 cryostats and 2 detectors: one 2k x 2k Rockwell Hawaii 2RG detector for L&M-bands, and one 1k x 1k Raytheon Aquarius detector for N-band, both read at high framerates, up to 30 frames per second. MATISSE is undergoing its first tests in laboratory today.
This manuscript describes the design, usage, and data-reduction pipeline developed for the Magellan Inamori Kyocera Echelle (MIKE) spectrometer used with the Magellan telescope at the Las Campanas Observatory. We summarize the basic characteristics o f the instrument and discuss observational procedures recommended for calibrating the standard data products. We detail the design and implementation of an IDL based data-reduction pipeline for MIKE data (since generalized to other echelle spectrometers, e.g. Keck/HIRES, VLT/UVES). This includes novel techniques for flat-fielding, wavelength calibration, and the extraction of echelle spectroscopy. Sufficient detail is provided in this manuscript to enable inexperienced observers to understand the strengths and weaknesses of the instrument and software package and an assessment of the related systematics.
The Large Yield Radiometer (LYRA) is an XUV-EUV-MUV (soft X-ray to mid-ultraviolet) solar radiometer onboard the European Space Agency PROBA2 mission that was launched in November 2009. LYRA acquires solar irradiance measurements at a high cadence (n ominally 20 Hz) in four broad spectral channels, from soft X-ray to MUV, that have been chosen for their relevance to solar physics, space weather and aeronomy. In this article, we briefly review the design of the instrument, give an overview of the data products distributed through the instrument website, and describe the way that data are calibrated. We also briefly present a summary of the main fields of research currently under investigation by the LYRA consortium.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا