ﻻ يوجد ملخص باللغة العربية
A massive young star cluster, initially embedded in its parent molecular cloud, will spiral into the Galactic Center from $lta 30m_6^{1/2}pc$ during the life-time of its most massive stars, if the combined total mass is $sim 10^6m_6msun$. On its way inwards the system loses most of its mass to the strong tidal field, until the dense cluster core of high-mass stars is finally disrupted near the central black hole. A simple model is presented to argue that this scenario may under plausible conditions explain the observed location and rotation of the Galactic Center HeI stars. Accretion of star clusters into the Galactic Center could be recurrent, and play an important role in regulating the activity of Sgr A$^ast$.
Recent observations of the Galactic center revealed a nuclear disk of young OB stars near the massive black hole (MBH), in addition to many similar outlying stars with higher eccentricities and/or high inclinations relative to the disk (some of them
The center of our galaxy is home to a massive black hole, SgrA*, and a nuclear star cluster containing stellar populations of various ages. While the late type stars may be too old to have retained memory of their initial orbital configuration, and h
The central parsec around the super-massive black hole in the Galactic Center hosts more than 100 young and massive stars. Outside the central cusp (R~1) the majority of these O and Wolf-Rayet (WR) stars reside in a main clockwise system, plus a seco
He I 10830 profiles acquired with Kecks NIRSPEC for 6 young low mass stars with high disk accretion rates (AS 353A, DG Tau, DL Tau, DR Tau, HL Tau and SVS 13) provide new insight into accretion-driven winds. In 4 stars the profiles have the signature
We present new kinematic measurements and modeling of a sample of 116 young stars in the central parsec of the Galaxy in order to investigate the properties of the young stellar disk. The measurements were derived from a combination of speckle and la