ﻻ يوجد ملخص باللغة العربية
A long flux enhancement, with an exponential decay time of 86 min, is detected in 4U 1735-44 with the BeppoSAX Wide Field Cameras. We argue that this is a type-I X-ray burst, making it the longest such burst ever observed. Current theories for thermonuclear bursts predict shorter and more frequent bursts for the observed persistent accretion rate.
In recent observations with the Rossi X-Ray Timing Explorer we have detected two simultaneous quasi-periodic oscillation (QPO) peaks in the low mass X-ray binary and atoll source 4U 1735-44. The lower and higher frequency QPOs have frequencies varyin
4U 1705-44 is one of the most-studied type I X-ray burster and Atoll sources. This source represents a perfect candidate to test different models proposed to self-consistently track the physical changes occurring between different spectral states bec
We report on the first simultaneous $NICER$ and $NuSTAR$ observations of the neutron star (NS) low-mass X-ray binary 4U 1735$-$44, obtained in 2018 August. The source was at a luminosity of $sim1.8~(D/5.6 mathrm{kpc})^{2}times10^{37}$ ergs s$^{-1}$ i
Thermonuclear bursts from slowly accreting neutron stars (NSs) have proven difficult to detect, yet they are potential probes of the thermal properties of the neutron star interior. During the first year of a systematic all-sky search for X-ray burst
The prototypical accretion-powered millisecond pulsar SAX J1808.4-3658 was observed simultaneously with Chandra-LETGS and RXTE-PCA near the peak of a transient outburst in November 2011. A single thermonuclear (type-I) burst was detected, the brighte