ترغب بنشر مسار تعليمي؟ اضغط هنا

Influence of Heliolatitudinal Anisotropy of Solar FUV/EUV Emissions on Lyman-alpha Helioglow: SOHO/SWAN Observations and WawHelioGlow Modeling

343   0   0.0 ( 0 )
 نشر من قبل Marek Strumik
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Observations of the Suns surface suggest a nonuniform radiated flux as related to the presence of bright active regions and darker coronal holes. The variations of the FUV/EUV source radiation can be expected to affect the Lyman-alpha backscatter glow measured by spaceborne instruments. In particular, inferring the heliolatitudinal structure of the solar wind from helioglow variations in the sky can be quite challenging if the heliolatitudinal structure of the solar FUV/EUV radiation is not properly included in the modeling of the heliospheric glow. We present results of analysis of the heliolatitudinal structure of the solar Lyman-alpha radiation as inferred from comparison of SOHO/SWAN satellite observations of the helioglow intensity with modeling results obtained from the recently-developed WawHelioGlow model. We find that in addition to time-dependent heliolatitudinal anisotropy of the solar wind, also time-dependent heliolatitudinal variations of the intensity of the solar Lyman-alpha and photoionizing emissions must be taken into account to reproduce the observed helioglow modulation in the sky. We present a particular latitudinal and temporal dependence of the solar Lyman-alpha flux obtained as a result of our analysis. We analyze also differences between polar-equatorial anisotropies close to the solar surface and seen by an observer located far from the Sun. We discuss the implications of these findings for the interpretation of heliospheric-glow observations.



قيم البحث

اقرأ أيضاً

The helioglow is a fluorescence of interstellar atoms inside the heliosphere, where they are excited by the solar EUV. Because the mean free path between collisions for the interstellar gas is comparable to the size of the heliosphere, the distributi on function of this gas inside the heliosphere strongly varies in space and with time and is non-Maxwellian. Coupling between realistically modeled solar factors and the distribution function of interstellar neutral gas is accounted for in a helioglow model that we have developed. WawHelioGlow is presented in the accompanying Paper I. Here, we present the evolution of the gas density, solar illumination, helioglow source function, and other relevant parameters building up the helioglow signal for selected lines of sight observed at 1 au. We compare these elements for various phases of the solar cycle and we present the sensitivity of the results to heliolatitudinal anisotropy of the solar EUV output. We assume a realistic latitudinal anisotropy of the solar wind flux using results from analysis of interplanetary scintillations. We compare the simulated helioglow with with selected maps observed by the SOHO/SWAN instrument. We demonstrate that WawHelioGlow is able to reproduce fundamental features of the sky distribution of the helioglow. For some phases of the solar cycle, the model with an anisotropy of the solar EUV output better reproduces the observations, while for other phases no EUV anisotropy is needed. In all simulated cases, the solar wind anisotropy following insight from interplanetary scintillation measurements is present.
Context. The remote observations of solar flare ion acceleration are rather limited. There are theoretical predictions for signatures of ion acceleration in EUV line profiles. Previous tests involve observations of flares with no evidence for energet ic ions. Aims. We aim to examine a source flare of impulsive (or 3He-rich) solar energetic particle events with EUV line spectroscopy. Methods. We inspect all (90+) reported 3He-rich flares of previous solar cycle 23 and find only four (recurrent) jets in the field of view of SOHO CDS. The jet with the most suitable spatial and temporal coverage is analyzed in detail. Results. Two enhanced (non-thermal) line broadenings are observed in the cooler chromospheric / transition-region lines and they are localized near the site where the closed magnetic loops reconnect with the open magnetic field lines. Both enhanced broadenings are found in the sites with redshifts in the lines, surrounded by the region with blueshifts. One enhanced line broadening is associated with a small flare without energetic particle signatures while another occurs just after the particle acceleration signatures of the main flare terminated. Conclusions. The observed excess broadening appears to be not directly related to the energetic ion production and motions. Further investigations where the critical impulsive phase of the flare is covered are required, ideally with high-resolution spectrometers intentionally pointed to the 3He-rich solar energetic particle source.
78 - S. Gunar 2020
The solar radiation in the Lyman-alpha spectral line of hydrogen plays a significant role in the illumination of chromospheric and coronal structures, such as prominences, spicules, chromospheric fibrils, cores of coronal mass ejections, and solar wi nd. Moreover, it is important for the investigation of the heliosphere, Earths ionosphere, and the atmospheres of planets, moons, and comets. We derive a reference quiet-Sun Lyman-alpha spectral profile that is representative of the Lyman-alpha radiation from the solar disk during a minimum of solar activity. This profile can serve as an incident radiation boundary condition for the radiative transfer modelling of chromospheric and coronal structures. Because the solar radiation in the Lyman lines is not constant over time but varies significantly with the solar cycle, we provide a method for the adaptation of the incident radiation Lyman line profiles (Lyman-alpha and higher lines) to a specific date. Moreover, we analyse how the change in the incident radiation influences the synthetic spectra produced by the radiative transfer modelling. To take into account the Lyman-alpha variation with the solar cycle, we used the LISIRD composite Lyman-alpha$ index. To estimate the influence of the change in the incident radiation in the Lyman lines on the results of radiative transfer models, we used a 2D prominence fine structure model. The analysis of the influence of the change in the incident radiation shows that the synthetic spectra are strongly affected by the modification of the incident radiation boundary condition. The hydrogen H alpha line can also be considerably affected, despite the fact that the H alpha radiation from the solar disk does not vary with the solar cycle.
The Sun Watcher with Active Pixels and Image Processing (SWAP) EUV solar telescope on board the Project for On-Board Autonomy 2 (PROBA2) spacecraft has been regularly observing the solar corona in a bandpass near 17.4 nm since February 2010. With a f ield-of-view of 54x54 arcmin, SWAP provides the widest-field images of the EUV corona available from the perspective of the Earth. By carefully processing and combining multiple SWAP images it is possible to produce low-noise composites that reveal the structure of the EUV corona to relatively large heights. A particularly important step in this processing was to remove instrumental stray light from the images by determining and deconvolving SWAPs point spread function (PSF) from the observations. In this paper we use the resulting images to conduct the first ever study of the evolution of the large-scale structure of the corona observed in the EUV over a three-year period that includes the complete rise phase of solar cycle 24. Of particular note is the persistence over many solar rotations of bright, diffuse features composed of open magnetic field that overlie polar crown filaments and extend to large heights above the solar surface. These features appear to be related to coronal fans, which have previously been observed in white-light coronagraph images and, at low heights, in the EUV. We also discuss the evolution of the corona at different heights above the solar surface and the evolution of the corona over the course of the solar cycle by hemisphere.
Solar energetic particles (SEPs) are an important product of solar activity. They are connected to solar active regions and flares, coronal mass ejections (CMEs), EUV waves, shocks, Type II and III radio emissions, and X-ray bursts. These phenomena a re major probes of the partition of energy in solar eruptions, as well as for the organization, dynamics, and relaxation of coronal and interplanetary magnetic fields. Many of these phenomena cause terrestrial space weather, posing multiple hazards for humans and their technology from space to the ground. Since particular flares, shocks, CMEs, and EUV waves produce SEP events but others do not, since propagation effects from the low corona to 1 AU appear important for some events but not others, and since Type II and III radio emissions and X-ray bursts are sometimes produced by energetic particles leaving these acceleration sites, it is necessary to study the whole system with a multi-frequency and multi-instrument perspective that combines both in-situ and remote observations with detailed modelling of phenomena. This article demonstrates this comprehensive approach, and shows its necessity, by analysing a trio of unusual and striking solar eruptions, radio and X-ray bursts, and SEP events that occurred on 4 November 2015. These events show both strong similarities and differences from standard events and each other, despite having very similar interplanetary conditions and only two are sites and CME genesis regions. They are therefore major targets for further in-depth observational studies, and for testing both existing and new theories and models. Based on the very limited modelling available we identify the aspects that are and are not understood, and we discuss ideas that may lead to improved understanding of the SEP, radio, and space-weather events.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا