ﻻ يوجد ملخص باللغة العربية
We give an effective proof of Faltings theorem for curves mapping to Hilbert modular stacks over odd-degree totally real fields. We do this by giving an effective proof of the Shafarevich conjecture for abelian varieties of $mathrm{GL}_2$-type over an odd-degree totally real field. We deduce for example an effective height bound for $K$-points on the curves $C_a : x^6 + 4y^3 = a^2$ ($ain K^times$) when $K$ is odd-degree totally real. (Over $overline{mathbb{Q}}$ all hyperbolic hyperelliptic curves admit an {e}tale cover dominating $C_1$.)
We prove a special case of a dynamical analogue of the classical Mordell-Lang conjecture. In particular, let $phi$ be a rational function with no superattracting periodic points other than exceptional points. If the coefficients of $phi$ are algebrai
In this paper, we prove the Uniform Mordell-Lang Conjecture for subvarieties in abelian varieties. As a byproduct, we prove the Uniform Bogomolov Conjecture for subvarieties in abelian varieties.
This expository survey is based on my online talk at the ICCM 2020. It aims to sketch key steps of the recent proof of the uniform Mordell-Lang conjecture for curves embedded into Jacobians (a question of Mazur). The full version of this conjecture i
Let $X$ be a curve of genus $ggeq 2$ over a number field $F$ of degree $d = [F:Q]$. The conjectural existence of a uniform bound $N(g,d)$ on the number $#X(F)$ of $F$-rational points of $X$ is an outstanding open problem in arithmetic geometry, known
We make several improvements to methods for finding integer solutions to $x^3+y^3+z^3=k$ for small values of $k$. We implemented these improvements on Charity Engines global compute grid of 500,000 volunteer PCs and found new representations for seve