Reframing Instructional Prompts to GPTks Language


الملخص بالإنكليزية

How can model designers turn task instructions into effective prompts for language models? Backed by extensive empirical analysis on GPT3, we observe important features for successful instructional prompts, and propose several reframing techniques for model designers to create such prompts. For example, a complex task can be decomposed into multiple simpler tasks. We experiment over 12 NLP tasks across 6 diverse categories (question generation, classification, etc.). Our results show that reframing improves few-shot learning performance by 14% while reducing sample complexity over existing few-shot baselines. The performance gains are particularly important on large language models, such as GPT3 where tuning models or prompts on large datasets is not feasible. Furthermore, we observe that such gains are not limited to GPT3; the reframed tasks remain superior over raw instructions across different model architectures, underscoring the cross-model generality of these guidelines. We hope these empirical-driven techniques will pave way for more effective ways to prompt LMs in future.

تحميل البحث