ﻻ يوجد ملخص باللغة العربية
We define the branched analog of SL(r,C)-opers and investigate their properties. For the usual SL(r,C)-opers, the underlying holomorphic vector bundle is independent of the opers. For the branched SL(r,C)-opers, the underlying holomorphic vector bundle depends on the oper. Given a branched SL(r,C)-oper, we associate to it another holomorphic vector bundle equipped with a logarithmic connection. This holomorphic vector bundle does not depend on the branched oper. We characterize the branched SL(r,C)-opers in terms of the logarithmic connections on this fixed holomorphic vector bundle.
We study the branched holomorphic projective structures on a compact Riemann surface $X$ with a fixed branching divisor $S, =, sum_{i=1}^d x_i$, where $x_i ,in, X$ are distinct points. After defining branched ${rm SO}(3,{mathbb C})$--opers, we show t
We define and study the space of $q$-opers associated with Bethe equations for integrable models of XXZ type with quantum toroidal algebra symmetry. Our construction is suggested by the study of the enumerative geometry of cyclic quiver varieties, in
Let X be a compact connected Riemann surface of genus g > 0 equipped with a nonzero holomorphic 1-form. Let M denote the moduli space of semistable Higgs bundles on X of rank r and degree r(g-1)+1; it is a complex symplectic manifold. Using the trans
Let G be a finite subgroup of SL(n,C), then the quotient C^n/G has a Gorenstein canonical singularity. Bridgeland-King-Reid proved that the G-Hilbert scheme Hilb^G(C^3) gives a crepant resolution of the quotient C^3/G for any finite subgroup G of SL(
The Gell-Mann grading, one of the four gradings of sl(3,C) that cannot be further refined, is considered as the initial grading for the graded contraction procedure. Using the symmetries of the Gell-Mann grading, the system of contraction equations i