ﻻ يوجد ملخص باللغة العربية
Recent research on quantum contextuality has been strongly centered on device-independent frameworks, such as the many graph approaches to contextuality and the celebrated sheaf-theoretical approach. Contextuality is described in these frameworks as a property of data only, making it possible to characterize and quantify the phenomena regardless of the reasons why it occurs. In this paper we look beyond the data and focus on possible explanations for this experimental fact. We show that a classical system generating contextual data can easily be found if the following conditions are satisfied (1) We only have access to a specific collection of epistemic measurements (which, all things considered, is basically Bohrs view on quantum measurements) and (2) There is a limitation on which of these measurements can be jointly performed. The way we see it, this example indicates that contextuality may be a consequence of the type of measurement taken into account, instead of an intrinsic feature of the system upon which these measurements are performed; if this is correct, the widespread idea that quantum contextuality is a non-classical feature can be avoided.
A central result in the foundations of quantum mechanics is the Kochen-Specker theorem. In short, it states that quantum mechanics is in conflict with classical models in which the result of a measurement does not depend on which other compatible mea
In quantum physics the term `contextual can be used in more than one way. One usage, here called `Bell contextual since the idea goes back to Bell, is that if $A$, $B$ and $C$ are three quantum observables, with $A$ compatible (i.e., commuting) with
We present a protocol to evaluate the expectation value of the correlations of measurement outcomes for ensembles of quantum systems, and use it to experimentally demonstrate--under an assumption of fair sampling--the violation of an inequality that
We experimentally test quantum contextuality of a single qutrit using NMR. The contextuality inequalities based on nine observables developed by Kurzynski et. al. are first reformulated in terms of traceless observables which can be measured in an NM
The notion of contextuality, which emerges from a theorem established by Simon Kochen and Ernst Specker (1960-1967) and by John Bell (1964-1966), is certainly one of the most fundamental aspects of quantum weirdness. If it is a questioning on scholas