ﻻ يوجد ملخص باللغة العربية
Arid zones contain a diverse set of microbes capable of survival under dry conditions, some of which can form relationships with plants under drought stress conditions to improve plant health. We studied squash (Cucurbita pepo L.) root microbiome under historically arid and humid sites, both in situ and performing a common garden experiment. Plants were grown in soils from sites with different drought levels, using in situ collected soils as the microbial source. We described and analyzed bacterial diversity by 16S rRNA gene sequencing (N=48) from the soil, rhizosphere, and endosphere. Proteobacteria were the most abundant phylum present in humid and arid samples, while Actinobacteriota abundance was higher in arid ones. The Beta-diversity analyses showed split microbiomes between arid and humid microbiomes, and aridity and soil pH levels could explain it. These differences between humid and arid microbiomes were maintained in the common garden experiment, showing that it is possible to transplant in situ diversity to the greenhouse. We detected a total of 1009 bacterial genera; 199 exclusively associated with roots under arid conditions. With shotgun metagenomic sequencing of rhizospheres (N=6), we identified 2969 protein families in the squash core metagenome and found an increased number of exclusively protein families from arid (924) than humid samples (158). We found arid conditions enriched genes involved in protein degradation and folding, oxidative stress, compatible solute synthesis, and ion pumps associated with osmotic regulation. Plant phenotyping allowed us to correlate bacterial communities with plant growth. Our study revealed that it is possible to evaluate microbiome diversity ex-situ and identify critical species and genes involved in plant-microbe interactions in historically arid locations.
Human associated microbial communities exert tremendous influence over human health and disease. With modern metagenomic sequencing methods it is possible to follow the relative abundance of microbes in a community over time. These microbial communit
The cost of DNA sequencing has dropped exponentially over the past decade, making genomic data accessible to a growing number of scientists. In bioinformatics, localization of short DNA sequences (reads) within large genomic sequences is commonly fac
We have simulated the evolution of sexually reproducing populations composed of individuals represented by diploid genomes. A series of eight bits formed an allele occupying one of 128 loci of one haploid genome (chromosome). The environment required
In spring turnip rape (Brassica rapa L. spp. oleifera) the most promising F1 hybrid system would be the Ogu-INRA CMS/Rf system. A Kosena fertility restorer gene Rfk1, homologue of the Ogura restorer gene Rfo, was successfully transferred from oilseed
Identifying which taxa in our microbiota are associated with traits of interest is important for advancing science and health. However, the identification is challenging because the measured vector of taxa counts (by amplicon sequencing) is compositi