ﻻ يوجد ملخص باللغة العربية
Deep Learning (DL) components are routinely integrated into software systems that need to perform complex tasks such as image or natural language processing. The adequacy of the test data used to test such systems can be assessed by their ability to expose artificially injected faults (mutations) that simulate real DL faults. In this paper, we describe an approach to automatically generate new test inputs that can be used to augment the existing test set so that its capability to detect DL mutations increases. Our tool DeepMetis implements a search based input generation strategy. To account for the non-determinism of the training and the mutation processes, our fitness function involves multiple instances of the DL model under test. Experimental results show that tool is effective at augmenting the given test set, increasing its capability to detect mutants by 63% on average. A leave-one-out experiment shows that the augmented test set is capable of exposing unseen mutants, which simulate the occurrence of yet undetected faults.
Diversity has been proposed as a key criterion to improve testing effectiveness and efficiency.It can be used to optimise large test repositories but also to visualise test maintenance issues and raise practitioners awareness about waste in test arte
Deep learning (DL) defines a new data-driven programming paradigm where the internal system logic is largely shaped by the training data. The standard way of evaluating DL models is to examine their performance on a test dataset. The quality of the t
It is integral to test API functions of widely used deep learning (DL) libraries. The effectiveness of such testing requires DL specific input constraints of these API functions. Such constraints enable the generation of valid inputs, i.e., inputs th
We propose a new test case prioritization technique that combines both mutation-based and diversity-based approaches. Our diversity-aware mutation-based technique relies on the notion of mutant distinguishment, which aims to distinguish one mutants b
Automatic software development has been a research hot spot in the field of software engineering (SE) in the past decade. In particular, deep learning (DL) has been applied and achieved a lot of progress in various SE tasks. Among all applications, a