The paper is devoted to the analysis of the blow-ups of derivatives, gradient catastrophes and dynamics of mappings of $mathbb{R}^n to mathbb{R}^n$ associated with the $n$-dimensional homogeneous Euler equation. Several characteristic features of the multi-dimensional case ($n>1$) are described. Existence or nonexistence of blow-ups in different dimensions, foundness of certain linear combinations of blow-up derivatives and the first occurrence of the gradient catastrophe are among of them. It is shown that the potential solutions of the Euler equations exhibit blow-up derivatives in any dimenson $n$. Several concrete examples in two- and three-dimensional cases are analysed. Properties of $mathbb{R}^n_{underline{u}} to mathbb{R}^n_{underline{x}}$ mappings defined by the hodograph equations are studied, including appearance and disappearance of their singularities.