ﻻ يوجد ملخص باللغة العربية
Simulation experiments are typically conducted repeatedly during the model development process, for example, to re-validate if a behavioral property still holds after several model changes. Approaches for automatically reusing and generating simulation experiments can support modelers in conducting simulation studies in a more systematic and effective manner. They rely on explicit experiment specifications and, so far, on user interaction for initiating the reuse. Thereby, they are constrained to support the reuse of simulation experiments in a specific setting. Our approach now goes one step further by automatically identifying and adapting the experiments to be reused for a variety of scenarios. To achieve this, we exploit provenance graphs of simulation studies, which provide valuable information about the previous modeling and experimenting activities, and contain meta-information about the different entities that were used or produced during the simulation study. We define provenance patterns and associate them with a semantics, which allows us to interpret the different activities, and construct transformation rules for provenance graphs. Our approach is implemented in a Reuse and Adapt framework for Simulation Experiments (RASE) which can interface with various modeling and simulation tools. In the case studies, we demonstrate the utility of our framework for a) the repeated sensitivity analysis of an agent-based model of migration routes, and b) the cross-validation of two models of a cell signaling pathway.
An open-source, Python-based Temporal Analysis of Products (TAP) reactor simulation and processing program is introduced. TAPsolver utilizes algorithmic differentiation for the calculation of highly accurate derivatives, which are used to perform sen
Motivation: Genome-wide association studies (GWASs), which assay more than a million single nucleotide polymorphisms (SNPs) in thousands of individuals, have been widely used to identify genetic risk variants for complex diseases. However, most of th
We present a successful deployment of high-fidelity Large-Eddy Simulation (LES) technologies based on spectral/hp element methods to industrial flow problems, which are characterized by high Reynolds numbers and complex geometries. In particular, we
Spoken dialog systems have seen applications in many domains, including medical for automatic conversational diagnosis. State-of-the-art dialog managers are usually driven by deep reinforcement learning models, such as deep Q networks (DQNs), which l
Kaemika is an app available on the four major app stores. It provides deterministic and stochastic simulation, supporting natural chemical notation enhanced with recursive and conditional generation of chemical reaction networks. It has a liquid-hand