ترغب بنشر مسار تعليمي؟ اضغط هنا

Set theory and a model of the mind in psychology

233   0   0.0 ( 0 )
 نشر من قبل Asger Tornquist
 تاريخ النشر 2021
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We investigate the mathematics of a model of the human mind which has been proposed by the psychologist Jens Mammen. Mathematical realizations of this model consist of so-called emph{Mammen spaces}, where a Mammen space is a triple $(U,mathcal S,mathcal C)$, where $U$ is a non-empty set (the universe), $mathcal S$ is a perfect Hausdorff topology on $U$, and $mathcal Csubseteqmathcal P(U)$ together with $mathcal S$ satisfy certain axioms. We refute a conjecture put forward by J. Hoffmann-J{o}rgensen, who conjectured that the existence of a complete Mammen space implies the Axiom of Choice, by showing that in the first Cohen model, in which ZF holds but AC fails, there is a complete Mammen space. We obtain this by proving that in the first Cohen model, every perfect topology can be extended to a maximal perfect topology. On the other hand, we also show that if all sets are Lebesgue measurable, or all sets are Baire measurable, then there are no complete Mammen spaces with a countable universe. Finally, we investigate two new cardinal invariants $mathfrak u_M$ and $mathfrak u_T$ associated with complete Mammen spaces and maximal perfect topologies, and establish some basic inequalities that are provable in ZFC. We show $mathfrak u_M=mathfrak u_T=2^{aleph_0}$ follows from Martins Axiom, and, contrastingly, we show that $aleph_1=mathfrak u_M=mathfrak u_T<2^{aleph_0}=aleph_2$ in the Baumgartner-Laver model.



قيم البحث

اقرأ أيضاً

The Doob convergence theorem implies that the set of divergence of any martingale has measure zero. We prove that, conversely, any $G_{deltasigma}$ subset of the Cantor space with Lebesgue-measure zero can be represented as the set of divergence of s ome martingale. In fact, this is effective and uniform. A consequence of this is that the set of everywhere converging martingales is ${bfPi}^1_1$-complete, in a uniform way. We derive from this some universal and complete sets for the whole projective hierarchy, via a general method. We provide some other complete sets for the classes ${bfPi}^1_1$ and ${bfSigma}^1_2$ in the theory of martingales.
We give a model-theoretic treatment of the fundamental results of Kechris-Pestov-Todorv{c}evi{c} theory in the more general context of automorphism groups of not necessarily countable structures. One of the main points is a description of the univers al ambit as a certain space of types in an expanded language. Using this, we recover various results of Kechris-Pestov-Todorv{c}evi{c}, Moore, Ngyuen Van Th{e}, in the context of automorphism groups of not necessarily countable structures, as well as Zucker.
97 - Taras Banakh 2020
This is a short introductory course to Set Theory, based on axioms of von Neumann--Bernays--Godel (briefly NBG). The text can be used as a base for a lecture course in Foundations of Mathematics, and contains a reasonable minimum which a good (post-g raduate) student in Mathematics should know about foundations of this science.
For a group $G$ first order definable in a structure $M$, we continue the study of the definable topological dynamics of $G$. The special case when all subsets of $G$ are definable in the given structure $M$ is simply the usual topological dynamics o f the discrete group $G$; in particular, in this case, the words externally definable and definable can be removed in the results described below. Here we consider the mutual interactions of three notions or objects: a certain model-theoretic invariant $G^{*}/(G^{*})^{000}_{M}$ of $G$, which appears to be new in the classical discrete case and of which we give a direct description in the paper; the [externally definable] generalized Bohr compactification of $G$; [externally definable] strong amenability. Among other things, we essentially prove: (i) The new invariant $G^{*}/(G^{*})^{000}_{M}$ lies in between the externally definable generalized Bohr compactification and the definable Bohr compactification, and these all coincide when $G$ is definably strongly amenable and all types in $S_G(M)$ are definable, (ii) the kernel of the surjective homomorphism from $G^*/(G^*)^{000}_M$ to the definable Bohr compactification has naturally the structure of the quotient of a compact (Hausdorff) group by a dense normal subgroup, and (iii) when $Th(M)$ is NIP, then $G$ is [externally] definably amenable iff it is externally definably strongly amenable. In the situation when all types in $S_G(M)$ are definable, one can just work with the definable (instead of externally definable) objects in the above results.
109 - Andrew Swan 2020
We define a class of higher inductive types that can be constructed in the category of sets under the assumptions of Zermelo-Fraenkel set theory without the axiom of choice or the existence of uncountable regular cardinals. This class includes the example of unordered trees of any arity.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا