On symmetries and charges at spatial infinity


الملخص بالإنكليزية

Following the recent work of Henneaux and Troessaert, which revisits the problem of spacetime symmetries at spatial infinity, we analyze this problem using the Bondi metric without determinant condition as our starting point. It turns out that in this case the symmetries at spatial infinity form the BMS symmetry appended with an additional infinite set of abelian symmetries. We furthermore find that imposing the determinant condition to the Bondi metric would result in a drastic reduction of symmetries, with no spatial (super) translations present.

تحميل البحث